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Abstract	

The	two	faculties	-	making	analogies	and	making	predictions	based	on	

previous	experiences	-	seem	to	be	essential	and	could	even	be	sufficient	for	

the	emergence	of	human-like	intelligence.	

It	 is	 common	 scientific	 practice	 to	 approach	 phenomena,	 that	 cannot	 be	

scientifically	 explained	 by	 an	 existing	 set	 of	 scientific	 theories,	 through	 the	 use	 of	

statistical	methods.	This	is	how	medical	research	led	to	coherent	treatment	procedures	

that	are	useful	for	patients.	By	observing	many	cases	of	a	disease	and	by	identifying	and	

taking	account	of	its	various	cause	and	effect	relationships,	the	statistical	evaluation	of	

these	 records	 enabled	 the	making	 of	well	 thought	 out	 predictions	 and	 (consequently)	

the	discovery	of	adequate	treatments	and	countermeasures.	Nevertheless,	since	the	rise	

of	molecular	biology	and	genetics,	we	can	observe	how	medical	science	is	moving	from	

the	 time-consuming	 trial	 and	 error	 strategy	 to	 a	 much	 more	 efficient,	 deterministic	

procedure	 that	 is	 grounded	 on	 solid	 theories	 and	 will	 eventually	 lead	 to	 a	 fully	

personalized	medicine.		

The	 science	 of	 language	 has	 had	 a	 very	 similar	 development.	 In	 the	 beginning,	

extensive	 statistical	 analyses	 led	 to	a	 good	analytical	understanding	of	 the	nature	and	

functioning	of	human	language	and	culminated	in	the	discipline	of	linguistics.	Following	

the	increasing	involvement	of	computer	science	in	the	field	of	 linguistics,	 it	 turned	out	

that	 the	 observed	 linguistic	 rules	 were	 extremely	 hard	 to	 use	 for	 the	 computational	

interpretation	 of	 language.	 In	 order	 to	 allow	 computer	 systems	 to	 perform	 language	

based	tasks	comparable	to	humans,	a	computational	theory	of	language	was	needed	and,	

as	no	such	theory	was	available,	research	again	turned	towards	a	statistical	approach	by	

creating	 various	 computational	 language	 models	 derived	 from	 simple	 word	 count	

statistics.	 Despite	 initial	 successes,	 statistical	Natural	 Language	 Processing	 (NLP)	 still	

suffers	 from	 two	 main	 flaws:	 The	 achievable	 precision	 is	 always	 lower	 than	 that	 of	

humans	and	the	algorithmic	frameworks	are	chronically	inefficient.	

Semantic	 Folding	 Theory	 (SFT)	 is	 an	 attempt	 to	 develop	 an	 alternative	

computational	 theory	 for	 the	 processing	 of	 language	 data.	 While	 nearly	 all	 current	

methods	 of	 processing	 natural	 language	 based	 on	 its	 meaning	 use	 word	 statistics,	 in	
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some	 form	 or	 other,	 Semantic	 Folding	 uses	 a	 neuroscience-rooted	 mechanism	 of	

distributional	semantics.	

After	 capturing	 a	 given	 semantic	 universe	 of	 a	 reference	 set	 of	 documents	 by	

means	 of	 a	 fully	 unsupervised	mechanism,	 the	 resulting	 semantic	 space	 is	 folded	 into	

each	 and	 every	 word-representation	 vector.	 These	 vectors	 are	 large,	 sparsely	 filled	

binary	vectors.	Every	feature	bit	in	this	vector	not	only	corresponds	to	but	also	equals	a	

specific	semantic	 feature	of	 the	 folded-in	semantic	space	and	 is	 therefore	semantically	

grounded.	

The	 resulting	 word-vectors	 are	 fully	 conformant	 to	 the	 requirements	 for	 valid	

word-SDRs	 (Sparse	 Distributed	 Representation)	 in	 the	 context	 of	 the	 Hierarchical	

Temporal	 Memory	 (HTM)	 theory	 of	 Jeff	 Hawkins.	 While	 HTM	 theory	 focuses	 on	 the	

cortical	mechanism	for	identifying,	memorizing	and	predicting	reoccurring	sequences	of	

SDR	patterns,	Semantic	Folding	theory	describes	the	encoding	mechanism	that	converts	

semantic	input	data	into	a	valid	SDR	format,	directly	usable	by	HTM	networks.	

The	main	advantage	of	using	the	SDR	format	is	that	it	allows	any	data-items	to	be	

directly	 compared.	 In	 fact,	 it	 turns	 out	 that	 by	 applying	 Boolean	 operators	 and	 a	

similarity	function,	many	Natural	Language	Processing	operations	can	be	implemented	

in	a	very	elegant	and	efficient	way.		

Douglas	 R.	 Hofstadter’s	 Analogy	 as	 the	 Core	 of	 Cognition	 is	 a	 rich	 source	 for	

theoretical	background	on	mental	computation	by	analogy.	In	order	to	allow	the	brain	to	

make	sense	of	 the	world	by	 identifying	and	applying	analogies,	 all	 input	data	must	be	

presented	 to	 the	 neo-cortex	 as	 a	 representation	 that	 is	 suited	 to	 the	 application	 of	 a	

distance	measure.	
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Part	1:	Semantic	Folding	

Introduction	

Human	language	has	been	recognized	as	a	very	complex	domain	for	decades.	No	

computer	system	has	so	far	been	able	to	reach	human	levels	of	performance.	The	only	

known	computational	system	capable	of	proper	language	processing	is	the	human	brain.	

While	we	 gather	more	 and	more	data	 about	 the	brain,	 its	 fundamental	 computational	

processes	 still	 remain	 obscure.	 The	 lack	 of	 a	 sound	 computational	 brain	 theory	 also	

prevents	a	fundamental	understanding	of	Natural	Language	Processing.	As	always	when	

science	lacks	a	theoretical	foundation,	statistical	modeling	is	applied	to	accommodate	as	

much	sampled	real-world	data	as	possible.	

A	fundamental	yet	unsolved	issue	is	the	actual	representation	of	language	(data)	

within	the	brain,	denoted	as	the	Representational	Problem.	

Taking	Hierarchical	Temporal	Memory	(HTM)	theory,	a	consistent	computational	

theory	 of	 the	 human	 cortex,	 as	 a	 starting	 point,	 we	 have	 developed	 a	 corresponding	

theory	of	language	data	representation:	The	Semantic	Folding	Theory.	

The	process	of	encoding	words,	by	using	a	topographical	semantic	space	as	

a	 distributional	 reference	 frame	 into	 a	 sparse	 binary	 representational	

vector	is	called	Semantic	Folding	and	is	the	central	topic	of	this	document.	

Semantic	 Folding	 describes	 a	method	 of	 converting	 language	 from	 its	 symbolic	

representation	(text)	into	an	explicit,	semantically	grounded	representation	that	can	be	

generically	processed	by	HTM	networks.	As	it	turns	out,	this	change	in	representation,	

by	 itself,	 can	solve	many	complex	NLP	problems	by	applying	Boolean	operators	and	a	

generic	similarity	function	like	Euclidian	Distance.	

Many	 practical	 problems	 of	 statistical	 NLP	 systems,	 like	 the	 high	 cost	 of	

computation,	 the	 fundamental	 incongruity	of	precision	and	recall1,	 the	complex	 tuning	

procedures	etc.,	can	be	elegantly	overcome	by	applying	Semantic	Folding.	

																																																								
1	The	more	you	get	of	one,	the	less	you	have	of	the	other.	
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Origins	and	Goals	of	Semantic	Folding	Theory	

Semantic	 Folding	 Theory	 is	 built	 on	 top	 of	 Hierarchical	 Temporal	 Memory	

Theoryi.	The	HTM	approach	to	understanding	how	neo-cortical	information	processing	

works,	while	staying	closely	correlated	to	biological	data,	is	somewhat	different	from	the	

more	mainstream	 projects	 that	 have	 either	 a	mainly	 anatomic	 or	 a	mainly	 functional	

mapping	approach.	

Neuroscientists	 working	 on	 micro-anatomic	 models ii 	have	 developed	

sophisticated	 techniques	 for	 following	 the	 actual	 3D	 structure	 of	 the	 cortical	 neural	

mesh	down	to	the	microscopic	level	of	dendrites,	axons	and	their	synapses.	This	enables	

the	creation	of	a	complete	and	exact	map	of	all	neurons	and	their	interconnections	in	the	

brain.	With	this	wiring	diagram	they	hope	to	understand	the	brains	functioning	from	the	

ground	up.	

Research	in	functional	mapping,	on	the	other	hand,	has	developed	very	advanced	

imaging	 and	 computational	models	 to	determine	how	 the	different	patches	of	 cortical	

tissue	are	interconnected	to	form	functional	pathways.	By	having	a	complete	inventoryiii	

of	all	existing	pathways	and	their	 functional	descriptions,	 the	scientists	hope	to	unveil	

the	general	information	architecture	of	the	brain.	

In	 contrast	 to	 these	 primary	 data-driven	 approaches,	 HTM-Theory	 aims	 to	

understand	 and	 identify	 principles	 and	 mechanisms	 by	 which	 the	 mammalian	 neo-

cortex	 operates.	 Every	 characteristic	 identified	 can	 then	 be	matched	 against	 evidence	

from	neuro-anatomical,	neuro-physiological	and	behavioral	research.	A	sound	theory	of	

the	 neo-cortex	 will	 in	 the	 end	 fully	 explain	 all	 the	 empirical	 data	 that	 has	 been	

accumulated	by	generations	of	neuroscientists	to	date.	

Semantic	 Folding	 Theory	 tries	 to	 accommodate	 all	 constraints	 defined	 by	

Hawkins’	cortical	learning	principles	while	staying	biologically	plausible	and	explaining	

as	many	features	and	characteristics	of	human	language	as	possible.		

SFT	 provides	 a	 framework	 for	 describing	 how	 semantic	 information	 is	

handled	by	the	neo-cortex	for	natural	language	perception	and	production,	

down	 to	 the	 fundamentals	 of	 semantic	grounding	during	 initial	 language	

acquisition.		
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This	is	achieved	by	proposing	a	novel	approach	to	the	representational	problem,	

namely	the	capacity	to	represent	meaning	in	a	way	that	 it	becomes	computable	by	the	

cortical	processing	infrastructure.	The	possibility	of	processing	language	information	at	

the	level	of	its	meaning	will	enable	a	better	understanding	of	the	nature	of	intelligence,	a	

phenomenon	closely	tied	to	human	language.	

The	Hierarchical	Temporal	Memory	Model	

The	 HTM	 Learning	 Algorithm	 is	 part	 of	 the	 HTM	 model	 developed	 by	 Jeff	

Hawkins.	It	is	not	intended	to	give	a	full	description	of	the	HTM	model	here,	but	rather	

to	 distill	 the	 most	 important	 concepts	 in	 order	 to	 understand	 the	 constraints	 within	

which	the	Semantic	Folding	mechanism	operates.	

Online	Learning	from	Streaming	Data	

From	 an	 evolutionary	 point	 of	 view,	 the	 mammalian	 neo-cortex	 is	 a	 recent	

structure	 that	 improves	 the	 command	 and	 control	 functions	 of	 the	 older	 (pre-

mammalian)	parts	of	 the	brain.	Being	exposed	 to	a	 constant	 stream	of	 sensorial	 input	

data,	 it	 continuously	 learns	 about	 the	 characteristics	 of	 its	 surrounding	 environment,	

building	 a	 sensory-motor	 model	 of	 the	 world	 that	 is	 capable	 of	 optimizing	 an	

individual’s	behavior	in	real	time,	ensuring	the	well-being	and	survival	of	the	organism.	

The	optimization	is	achieved	by	using	previously	experienced	and	stored	information	to	

modulate	and	adjust	the	older	brain’s	reactive	response	patterns.	

Hierarchy	of	Regions	

The	neo-cortex,	 in	 general,	 is	 a	 two-dimensional	 sheet	 covering	 the	majority	of	

the	brain.	It	is	composed	of	microcircuits	with	a	columnar	structure,	repeating	over	its	

entire	extent.		

Regardless	 of	 their	 functional	 role	 (visual,	 auditory	 or	 proprioceptive),	 the	

microcircuits	do	not	change	much	of	their	inner	architecture.	This	micro-architecture	is	

even	stable	across	species,	suggesting	that	it	 is	not	only	older	on	an	evolutionary	scale	

than	 the	 differentiation	 of	 the	 various	 mammalian	 families	 but	 also	 that	 it	 is	

implementing	a	basic	algorithm	to	be	used	for	all	(data)	processing.		
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Although	 anatomically	 identical,	 the	 surface	 of	 the	 neo-cortex	 is	 functionally	

subdivided	into	different	regions.	Every	region	receives	inputs	either	originating	from	a	

sensorial	 organ	 or	 being	 generated	 by	 the	 outputs	 of	 another	 region.	 The	 different	

regions	 are	 organized	 in	hierarchies.	 Every	 region	outputs	 a	 stable	 representation	 for	

each	 learned	 sequence	 of	 input	 patterns,	 which	 means	 that	 the	 fluctuations	 of	 input	

patterns	become	continuously	slower	while	ascending	hierarchical	layers.	

Sequence	Memory	

Every	 cortical	 module	 performs	 the	 same	 fundamental	 operations	 while	 its	

inputs	 are	 exposed	 to	 a	 continuous	 stream	 of	 input	 data	 among	which	 it	 detects	 and	

memorizes	 the	 reoccurring	 sequences	 of	 patterns.	 Every	 recognized	 input-sequence	

generates	 a	 distinct	 output-pattern	 that	 is	 exposed	 at	 the	 output	 stage	 of	 the	module.	

During	the	period	where	the	input	flow	is	within	a	known	sequence,	each	module	also	

generates	 a	 prediction	 pattern	 containing	 a	 union	 of	 all	 patterns	 that	 are	 expected	 to	

follow	the	current	one,	according	to	its	stored	sequence	(experience).	

The	 above	 capabilities	 describe	 a	 memory	 system	 rather	 than	 a	 processing	

system	as	one	might	expect	to	find	in	this	highest	brain	structure.	This	memory	system	

is	capable	of	processing	data	just	by	storing	it.	What	is	special	for	this	memory	is	that	its	

data-input	 is	 different	 from	 its	 data-output	 and	 specific	 sequences	 of	 several	 input-

patterns	lead	to	a	single	specific	output-pattern.	

In	 contrast,	 all	 electronic	 memory	 components	 we	 integrate	 into	 computer	

systems,	use	discrete	addresses	to	store	and	retrieve	data	over	a	combined	input/output	

port.	These	memory-addresses	do	not	represent	data	by	themselves	but	rather	denote	

the	 location	of	 a	 specific	 storage	 cell	within	a	uniformly	organized	array	of	 such	 cells.	

This	storage	location	is	also	independent	of	any	actual	data	and	holds	whatever	value	is	

stored	there	without	giving	any	indication	on	what	the	stored	data	corresponds	to.	All	

semantic	 information	about	 the	data	has	 to	be	contributed	by	the	associated	program,	

that	 stores	 and	 reads	 the	 data	 values	 in	 every	 storage	 cell	 it	 uses.	 This	 indirection	

decouples	 the	 semantics	 of	 the	data	 from	 its	 actual	 (scalar)	 value.	 It	 remains	 the	 sole	

responsibility	 of	 the	 associated	 software	 to	 handle	 the	 data	 in	 a	 meaningful	 way	 by	

executing	a	sequence	of	rules	and	transformations	that	act	on	the	stored	(scalar)	data.	

The	 number	 of	 processing	 steps	 can	 vary	 substantially	 depending	 on	 the	 intended	

semantic	 goal	 and	 all	 intended	 semantic	 aspects	 have	 to	 be	 known	 in	 advance,	 at	 the	
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time	the	program	is	created.	The	inability	to	predict	execution	latency	and	the	need	to	

conceptualize	all	semantic	processing	steps	in	advance	make	it	hard	(if	not	impossible)	

to	perform	the	input-	to	output-data	conversion	in	real-time.	Furthermore,	unexpected	

input	data	very	often	leads	to	a	crash	of	the	applied	software.	

The	only	technical	memory	architecture	that	comes	close	to	the	cortical	memory	

described	above	is	that	of	Content	Addressable	Memory,	which	corresponds	in	principle	

to	 standard	 memory	 cells	 with	 an	 address	 input	 and	 a	 data	 in/output,	 but	 with	 the	

exception	that	actual	data	is	directly	interpreted	as	address	and	fed	on	the	address	input	

(hence	content	addressable).	As	an	example	lets	assume	the	string:	‘2+3’.	If	each	of	the	

three	characters	represents	an	8-bit	ASCII	code	we	can	 interpret	the	string	as	a	24-bit	

address	pointing	 to	a	 specific	memory	 location	 in	an	array	of	224	 (approx.	16	Million)	

cells,	 in	 which	 the	 result	 ‘5’	 is	 stored.	Whenever	 a	 term	 like	 ‘2+3”	 is	 entered	 on	 the	

address	input,	the	result	is	returned	one	single	cycle	later	on	the	data-output.	

Although	this	seems	efficient	in	processing	terms,	such	an	architecture	needs	vast	

amounts	of	memory	to	become	a	general	purpose	processing	mechanism.	A	query	like:	

“which	 is	 the	 highest	 mountain	 on	 earth”	 would	 assume	 an	 address	 space	 of	 38x8-

bits=304	bits	assuming	an	array	of	3.26	x	1091	memory	cells.	

The	 fact	 that	 memory	 has	 been,	 for	 a	 long	 time,	 the	most	 expensive	 part	 of	 a	

computer	 has	 dwarfed	 the	use	 of	 CAMs	 to	 very	 specific	 and	 small	 applications	 like	 in	

network	 appliances,	 where	 the	 address	 space	 is	 small	 and	 real-time	 processing	

important.	

In	contrast	the	cortical	memory	has	a	mechanism	to	generate	specific	addresses	

for	 every	 memory	 cell	 depending	 on	 the	 data	 to	 be	 stored.	 This	 means	 that	 not	 all	

thinkable	memory	locations	have	to	be	present	but	that	the	address	of	a	memory	cell	is	

learned	 whenever	 data	 gets	 stored.	 As	 a	 result,	 the	 cortical	 memory	 function	

implements	best	of	both	worlds:	 indirection-free	(no	processor	needed)	semantic	data	

storage	with	a	minimum	number	of	 actually	 implemented	memory	cells.	The	 result	of	

any	“query”	can	always	be	determined	 in	a	single	step	while	allowing	query	widths	of	

thousands	if	not	millions	of	bits.	

This	 constant	 and	minimal	 processing	 delay,	 independent	 of	 the	 nature	 of	 the	

processed	 data,	 is	 essential	 to	 provide	 an	 organism	with	 useful	 real-time	 information	

about	its	surroundings.		
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A	second	big	advantage	of	the	HTM-CAM	principle	is	that	the	amount	of	data	that	

can	 be	 handled	 in	 real	 time	 increases	 linearly	with	 the	 amount	 of	 available	memory-

modules.	More	modules	mean	more	processing	power,	which	is	a	very	effective	way	for	

evolution	to	adapt	and	improve	the	mammalian	brain:	just	by	augmenting	the	amount	of	

cortical	real	estate.	

Sparse	Distributed	Representations	

The	memory	 needed	 for	 a	 CAM	 can	 be	 substantially	 reduced	 if	 compression	 is	

applied	 to	 the	addresses	generated.	Technical	CAM	 implementations	use	dense	binary	

hash	 values	 where	 every	 combination	 of	 address-bits	 points	 to	 a	 single	 memory	

location.	Unfortunately,	the	computational	effort	to	encode	and	decode	the	hash	values	

is	very	high	and	counteracts	-	with	growing	memory	space	-	the	speed	advantages	of	the	

CAM	approach.		

The	architectural	 limitation	to	smaller	and	constant	word	sizes	(8,	16,	32,	64	…	

bits),	 corresponding	 to	 a	 dense	 representation	 scheme,	 became	 the	 fundament	 of	

standard	 computer	 technology	 and	 triggered	 the	 race	 for	 ever	 increasing	 clock	 rates	

pacing	more	and	more	powerful	serial	processing	cores.		

	

	

Fig.		1:	Dense	representation	of	the	word	cat	-	individual	bits	don’t	carry	meaning	

By	 using	 a	 dense	 representation	 format,	 every	 combination	 of	 bits	 identifies	 a	

specific	 data	 item.	 This	 would	 be	 efficient	 in	 the	 sense	 that	 it	 would	 allow	 for	 much	

smaller	word	sizes	but	it	would	also	create	the	need	for	a	dictionary	to	keep	track	of	all	

the	 data	 items	 recorded.	 The	 longer	 the	 dictionary	 list	 would	 become,	 the	 longer	 it	

would	 take	 to	 find	and	 retrieve	any	 specific	 item.	This	dictionary	 could	 link	 the	 set	of	

stimuli	 corresponding	 to	 the	 word	 cat	 to	 the	 identifier	 011000110110000101110100	
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therefore	materializing	the	semantic	grounding	needed	to	process	the	data	generated	by	

the	surrounding	world.		

Instead	 of	 realizing	 the	 semantic	 grounding	 through	 the	 indirection	 of	 a	

dictionary,	 it	 could	 also	 occur	 at	 the	 representation	 level	 directly.	 Every	 bit	 of	 the	

representation	 could	 correspond	 to	 an	 actual	 feature	 of	 the	 corresponding	 data	 item	

that	 has	 been	 perceived	 by	 one	 or	 more	 senses.	 This	 leads	 to	 a	 much	 longer	

representation	 in	 terms	of	number	of	bits	but	 these	 long	binary	words	have	only	very	

few	set	bits	(sparse	filling).		

	

	

	
	

Fig.		2:	Excerpt	of	a	sparse	representation	of	cat	-	every	bit	has	a	specific	meaning	

By	 storing	 only	 the	 positions	 of	 the	 set	 bits,	 a	 very	 high	 compression	 rate	

becomes	possible.	Furthermore,	the	use	of	a	constantly	growing	dictionary	for	semantic	

grounding	can	be	avoided.	

By	 using	 a	 sparse	 data	 representation,	 CAM-computing	 becomes	 possible	 by	

simply	 increasing	 the	 number	 of	 cortical	 modules	 deployed.	 But	 one	 big	 problem	

remains:	noise.	Unlike	silicon	based	devices,	biological	systems	are	very	imprecise	and	

unreliable,	 introducing	high	 levels	of	noise	 into	 the	memory-computing	process.	 False	

activation	or	false	dropping	of	a	single	bit	in	a	dense	representation	renders	the	whole	

word	into	something	wrong	or	unreadable.	Sparse	representations	are	more	resistant	to	

dropped	bits	as	not	all	descriptive	features	are	needed	to	identify	a	data	item	correctly.	

But	shifted	bit-positions	are	still	not	tolerated	as	the	following	example	shows.	
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Fig.		3:	Influence	of	dropped	and	shifted	bits	on	sparse	representations	

In	the	above	example,	the	various	binary	features	are	located	at	random	positions	

within	 the	 sparse	binary	data	word.	A	one-to-one	match	 is	necessary	 to	 compare	 two	

data-items.	 If	 we	 now	 introduce	 a	 mechanism	 that	 tries	 to	 continually	 group2	the	

feature-bits	that	fire	simultaneously	within	the	data	word,	we	gain	several	benefits.	

	

	
	

Fig.		4:	Grouping	co-occurring	features	together	improves	noise	resistance	

A	 first	 advantage	 is	 the	 substantial	 improvement	 of	 noise	 resistance	 in	 the	

representation	of	messy	real-world	data.	When	a	set	bit	shifts	slightly	to	the	left	or	the	

right	-	a	blur-effect	happening	frequently	when	biological	building	blocks	are	used	-	the	

																																																								
2	In	a	spatial,	topographical	sense.	
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semantic	meaning	of	the	whole	data-word	remains	very	stable,	thus	contributing	only	a	

very	small	error	value.	

A	 second	 advantage	 is	 the	 possibility	 to	 compute	 a	 gradual	 similarity	 value,	

allowing	a	much	 finer-grained	semantic	comparison,	which	 is	mandatory	 for	 functions	

like	disambiguation	and	inference.	

If	we	assume	the	neo-cortex	to	be	a	memory	system	able	to	process	data	in	

real-time	and	to	be	built	out	of	repeating	microcircuits,	the	Sparse	

Distributed	Representation	is	the	minimum	necessary	data	

configuration,	while	being	the	biologically	most	convenient	data	format	to	

be	used.	

Properties	of	SDR	Encoded	Data	

I. SDRs	can	be	efficiently	stored	by	only	storing	the	indices	of	the	(very	few)	set	

bits.	The	information	loss	is	negligible	even	if	subsampled.	

II. Every	bit	 in	 a	 SDR	has	 semantic	meaning	within	the	context	of	the	encoding	

sensor.	

III. Similar	 things	 look	 similar,	 if	 encoded	 as	 a	 SDR.	 Similarity	 can	 be	 calculated	

using	computationally	simple	distance	measures.	

IV. SDRs	are	fault	tolerant	because	the	overall	semantics	of	an	item	are	maintained	

even	if	several	of	the	set	bits	are	discarded	or	shifted.	

V. The	union	of	several	SDRs	results	in	a	SDR	that	still	contains	all	the	information	

of	the	constituents	and	behaves	like	a	generic	SDR.	By	comparing	a	new	unseen	

SDR	with	a	union-SDR,	it	can	be	determined	if	the	new	SDR	is	part	of	the	union.	

VI. SDRs	can	be	brought	to	any	level	of	sparsity	in	a	semantically	consistent	fashion	

by	using	a	locality	based	weighting	scheme.	

On	Language	Intelligence	

A	frequent	assumption	about	machine	intelligence	is	that,	in	a	machine	executing	

a	sufficiently	complex	computational	algorithm,	intelligence	would	emerge	and	manifest	

itself	by	generating	output	indistinguishable	from	that	of	humans.		
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In	HTM	theory,	however,	intelligence	seems	to	be	rather	a	principle	of	operation	

than	 an	 emerging	 phenomenon.	 The	 learning	 algorithm	 in	 the	HTM	microcircuits	 is	 a	

comparably	simple	storage	mechanism	for	short	sequences	of	SDR-encoded	sensor-	or	

input-data.	Whenever	a	data	 item	is	presented	to	the	circuit,	a	prediction	of	what	data	

items	 are	 expected	 next	 is	 generated.	 This	 anticipatory	 sensor-data	 permits	 the	 pre-

selection	 and	 optimization	 of	 the	 associated	 response	 by	 choosing	 from	 a	 library	 of	

previously	experienced	and	stored	output-SDR-sequences.	This	intelligent	selection	step	

is	 carried	out	by	applying	prediction	and	generalization	 functions	 to	 the	SDR	memory	

cells.		

It	 has	 been	 shown	 that,	 on	 the	 one	 hand,	 prediction	 SDRs	 are	 generated	 by	

creating	 an	 “OR”	 (union)	 of	 all	 the	 stored	 SDRs	 that	 belong	 to	 the	 currently	 active	

sequence.	This	prediction	SDR	is	passed	down	the	hierarchy	and	used	to	disambiguate	

unclear	 data,	 to	 fill	 up	 incomplete	 data	 and	 to	 strengthen	 the	 storage	 persistence	 of	

patterns	that	have	been	predicted	correctly.	On	the	other	hand,	the	output-SDRs	can	be	

regarded	 as	 a	 form	 of	 “AND”	 (intersection)	 of	 the	 stored	 SDRs	 within	 the	 current	

sequence.	This	generalized	output-SDR	 is	passed	up	 the	hierarchy	 to	 the	 inputs	of	 the	

next	 higher	HTM-layer	 leading	 to	 an	 abstraction	of	 the	 input	 data	 to	 detect	 and	 learn	

higher-level	sequences	or	to	locate	similar	SDR-sequences.		

In	fact,	intelligence	is	not	solely	rooted	in	the	algorithm	used.	A	perfectly	working	

HTM	circuit	would	not	exhibit	 intelligent	behavior	by	 itself	but	only	after	having	been	

exposed	 to	 sufficient	 amounts	 of	 relevant	 special	 case	 experiences.	 Neo-cortical	

intelligence	 seems	 to	 be	 continuously	 saved	 into	 the	 HTM-system	 driven	 by	 an	 input	

data	stream	while	being	exposed	to	the	world.	

A	Brain	Model	of	Language	

By	 taking	 the	 HTM	 theory	 as	 a	 starting	 point,	 we	 can	 characterize	 Semantic	

Folding	 as	 a	 data-encoding	 mechanism	 for	 inputting	 language	 semantics	 into	 HTM	

networks.	

Language	 is	 a	 creation	 of	 the	 neo-cortex	 to	 exchange	 information	 about	 the	

semantics	of	 the	world,	between	 individuals.	The	neo-cortex	encodes	mental	 concepts	

(stored	semantics)	into	a	symbolic	representation	that	can	be	sent	to	muscle	systems	to	

form	 the	 externalization	 of	 the	 inner	 semantic	 representation.	 The	 symbols	 are	 then	
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materialized	 as	 acoustic	 signals	 to	 become	 speech	 or	 as	writing	 to	 become	 text	 or	 as	

other	more	exotic	encodings	like	Morse	or	Braille.	In	order	to	conceive	the	semantics	of	

a	 communication,	 the	 receiver	 has	 to	 convert	 the	 symbols	 back	 into	 the	 inner	

representation	format	that	can	than	be	directly	utilized.	

From	the	semantic	point	of	view,	the	smallest	unit3	that	contains	useful,	namely	

lexical,	information	consists	in	words.	

The	Word-SDR	Layer	

Hypothesis:	 All	 humans	 have	 a	 language	 receptive	 brain	 region	

characterized	as	a	word-SDR	layer.	

During	 language	 production,	 language	 is	 encoded	 for	 the	 appropriate	

communication	 channel	 like	 speech,	 text	 or	 even	 Morse	 code	 or	 Braille.	 After	 the	

necessary	 decoding	 steps	 during	 the	 receiver’s	 perception,	 there	 must	 be	 a	 specific	

location	in	the	neo-cortex	where	the	inner	representation	of	a	word	appears	for	the	first	

time.	

																																																								
3	From	a	more	formal	lexical	semantic	point	of	view,	the	morpheme	is	the	smallest	unit	
encapsulating	meaning.	Nevertheless,	the	breaking	down	of	words	into	morphemes	seems	to	
occur	only	after	a	sufficient	number	of	word	occurrences	has	been	assimilated	and	probably	
occurs	only	at	a	later	stage	during	language	acquisition.	Words	would	therefore	be	the	
algorithm-generic	semantic	atoms.	
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Fig.		5:	The	word-SDR	Hypothesis	

The	 brain	 decodes	 language	 by	 converting	 the	 symbolic	 content	 of	 phoneme-

sequences	 or	 text	 strings	 into	 a	 semantically	 grounded	 neural	 representation	 of	 the	

meaning(s)	 of	 a	word,	 the	 “semantic	 atom”.	These	 encoding	 and	decoding	 capabilities	

are	independent	from	the	actual	semantic	processing.	Humans	are	capable	of	learning	to	

use	new	communication	channels	such	as	Braille	or	Morse,	and	can	even	be	trained	to	

use	non-biological	actuators	like	buttons	or	keyboards	operated	by	fingers,	lips,	tongue	

or	any	other	cortically	controlled	effector.	

There	 is	 a	 place	 in	 the	 neo-cortex	 where	 the	 neurological	 representation	 of	 a	

word	meaning,	appears	for	the	first	time	by	whatever	means	it	has	been	communicated.	

According	to	the	HTM	theory,	the	word	representation	has	to	be	in	the	SDR	format,	as	all	

data	 in	 the	 neo-cortex	 has	 this	 format.	 The	 word-SDRs	 all	 appear	 as	 the	 output	 of	 a	

specific	 hierarchical	 word-SDR	 layer.	 The	 word-SDR	 layer	 is	 the	 first	 step	 in	 the	

hierarchy	 of	 semantic	 processing	within	 the	 neo-cortex	 and	 could	 be	 regarded	 as	 the	

language	semantic	receptive	region.	

	

Language	 is	 regarded	 as	 an	 inherently	 human	 capacity.	 No	 other	 mammal4	is	

capable	 of	 achieving	 an	 information	 density	 comparable	 to	 that	 of	 human	

communication,	which	suggests	that	the	structure	of	the	human	neo-cortex	is	different,	
																																																								
4	Only	mammals	have	a	neo-cortex.	
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in	 that	 aspect,	 from	 other	 mammals.	 Furthermore,	 all	 humans	 (except	 for	 rare	

disabilities)	have	the	innate	capability	for	language	and	all	languages	have	very	common	

structures.	Therefore,	language	capacity	has	to	be	deeply	and	structurally	rooted	in	the	

human	neo-cortical	layout.	

Mechanisms	in	Language	Acquisition	

Although	there	is	much	discussion	about	the	question	whether	language	capacity	

is	innate	or	learned,	the	externalization	of	language	is	definitely	an	acquired	skill,	as	no	

baby	has	ever	spoken	directly	after	birth.		

Language	 acquisition	 is	 typically	 bootstrapped	 via	 speech	 and	 is	 typically	

extended	during	childhood	to	its	written	form.	

The	Special	Case	Experience	(SCE)	

The	 neo-cortex	 learns	 exclusively	 by	 being	 exposed	 to	 a	 stream	 of	 patterns	

coming	 in	 from	 the	 senses.	 Initially,	 a	 baby	 is	 exposed	 to	 repeated	 basic	 phonetic	

sequences	 corresponding	 to	 words.	 The	 mother’s	 repeated	 phonetic	 sequences	 are	

presented	 as	 utterances,	 increasing	 in	 complexity	 with	 new	 words	 being	 constantly	

introduced.	

According	 to	 HTM-theory,	 the	 neo-cortex	 detects	 reoccurring	 patterns	 (word-

SDRs)	 and	 stores	 the	 sequences	 where	 they	 appear.	 Every	 word-sequence	 that	 is	

perceived	 within	 a	 short	 time	 unit	 corresponds	 to	 a	 Special	 Case	 Experience	 (SCE):	

comparable	 to	 perceiving	 a	 visual	 scene.	 In	 the	 same	way	 that	 every	perceived	 visual	

scene	corresponds	to	a	special	case	experience	of	a	set	of	reoccurring	shapes,	colors	and	

contrasts,	 every	 utterance	 corresponds	 to	 an	 SCE,	 corresponding	 to	 a	 specific	 word-

sequence.	 In	 the	 case	 of	 visual	 scene	 perception,	 the	 same	 objects	 never	 produce	 the	

exact	 same	 retina	 pattern	 twice.	 In	 comparison,	 the	 same	 concepts	 can	 be	 expressed	

with	language	by	a	very	large	number	of	concrete	word	combinations	that	never	seem	to	

repeat	in	their	same	exact	manner.	

The	sum	of	the	perceived	special-case-experience-utterances	constitutes	the	

only	source	of	semantic	building	blocks	during	language	acquisition.	
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Mechanisms	in	Semantic	Grounding	

The	process	of	binding	a	symbol,	like	a	written	or	spoken	word,	to	a	conceivable	

meaning	represents	the	fundamental	semantic	grounding	of	language.	

If	we	assume	 that	all	patterns	 that	ascend	 the	cortical	hierarchy	originate	 from	

sensorial	 inputs,	 we	 can	 hypothesize	 that	 the	 meaning	 of	 a	 word	 is	 grounded	 in	 the	

sensorial	afferences	at	the	very	moment	of	the	appearance	of	the	word-SDR	at	the	word-

SDR	layer.	Whenever	a	specific	word	is	perceived	as	an	SCE,	a	snapshot	of	some	(or	all)	

of	 the	 sensorial	 afferences	 is	 made	 and	 tied	 to	 the	 corresponding	 word-SDR.	 Every	

subsequent	 appearance	 of	 the	 same	 word-SDR	 generates	 a	 new5	sensorial	 snapshot	

(state)	that	is	AND-ed	with	the	currently	stored	one.	Over	time,	only	the	bits	that	are	in	

common	within	all	 states	remain	active.	These	remaining	bits	can	 therefore	be	said	 to	

characterize	the	semantic	grounding	of	that	word.	

The	 mechanism	 described	 above	 is	 suitable	 for	 bootstrapping	 the	 semantic	

grounding	process	during	the	initial	 language	acquisition	phase.	Over	time,	vocabulary	

acquisition	is	not	only	realized	using	sensory	afferences	but	also	based	on	known	words	

that	have	been	learned	previously.	Initially,	semantic	grounding	through	sensory	states	

is	 predominant,	 until	 a	 basic	 set	 of	 concepts	 is	 successfully	 processed;	 then	 the	

definition	 of	 words	 using	 known	words	 increases	 and	 becomes	 the	main	method	 for	

assimilating	new	words.	

Definition	of	Words	by	Context	

The	 mechanism	 of	 sensory	 semantic	 grounding	 seems	 to	 be	 specific	 to	 the	

developing	neo-cortex	as	the	mature	brain	depends	mostly	on	existing	words	to	define	

new	ones.	The	sensorial-state	semantic	grounding	hypothesis	could	even	be	extended	by	

correlating	the	sensorial-grounding	phase	with	the	neo-cortex	before	its	pruning	period,	

which	 explains	 why	 it	 is	 so	 hard	 for	 adults	 to	 specify	 how	 the	 generic	 semantic	

grounding	could	have	happened	during	their	early	childhood.	

The	mature	way	of	linking	a	concept	to	a	specific	word	is	by	using	other	known	

words.	 Applying	 the	 previously	 introduced	 concept	 of	 a	 Special	 Case	 Experience,	 the	

mechanism	can	be	described	as	 follows:	 a	 sequence	of	words	 received	by	 the	 sensory	

system	 within	 a	 sufficiently	 short	 perceptive	 time-interval	 can	 be	 regarded	 as	 an	

																																																								
5	The	subsequent	word-SDR	snapshots	are	new	in	the	sense	that	they	have	small	differences	to	
the	previously	stored	one	and	they	are	the	same	in	that	they	have	a	large	overlap	with	the	
previously	stored	one.	
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instance	 of	 a	 Linguistic	 Special	 Case	 Experience,	 corresponding	 to	 a	 statement,	

consisting	 of	 one	 or	 more	 sentences.	 In	 the	 case	 of	 written	 language,	 this	 Linguistic	

Special	Case	Experience	would	be	a	text	snippet	representing	a	context.	This	text	snippet	

can	 be	 regarded	 as	 a	 context	 for	 every	word	 that	 is	 contained	 in	 it.	 Eventually,	 every	

word	 will	 get	 linked	 to	 more	 and	 more	 new	 contexts,	 strengthening	 its	 conceptual	

grounding.	 The	 linking	 occurs	 by	 OR-ing	 the	 new	 Special	 Case	 Experience	 with	 the	

existing	ones,	thereby	increasing	the	number	of	contexts	for	each	word.		

Semantic	Mapping	

As	discussed	previously	the	representation	for	a	word	appears	in	the	neo-cortex	

at	 the	 (virtual)	 receptive	 area	 for	 words.	 As	 the	 neo-cortex	 is	 organized	 as	 a	 2-

dimensional	 sheet,	 the	 world-layer	 will	 be	 organized	 in	 a	 2-dimensional	 fashion	 too.	

While	the	brain	is	continuously	exposed	to	incoming	data	and	the	extent	of	the	cortical	

area	 is	relatively	stable,	 there	has	to	be	a	mechanism	that	reuses	the	available	storage	

space	by	storing	the	incoming	SCEs	in	an	associative	way	one	on	top	of	each	other.	This	

can	 be	 achieved	 by	 the	 simple	mechanism	 of	 having	 incoming	 bits	 that	 are	 triggered	

simultaneously,	 for	 features	 that	 occur	 concurrently	 and	 which	 are	 therefore	

semantically	 related,	 attract	 each	other	 spatially	within	 the	2-dimensional	word-layer.	

As	 a	 result,	 every	word	 is	 represented	 by	 its	 contexts	 that	 are	 distributed	 across	 the	

word-layer	and	every	context-position	within	the	2D-area	of	the	word-layer	consists	of	

semantically	 highly	 related	 SCEs	 (utterances)	 that	 themselves	 share	 a	 significant	

number	 of	words.	 After	 having	 perceived	 a	 large	 enough	 number	 of	 SCEs	 the	 context	

positions	end	up	being	clustered	in	a	way	that	puts	similar	(semantically	close)	contexts	

near	to	each	other	and	dissimilar	ones	more	distant	from	each	other.		

This	mechanism	ensures	that	two	brains	that	are	continuously	exposed	to	similar	

SCEs	 end	 up	 having	 their	 contexts	 grouped	 in	 a	 similar	 way,	 creating	 an	 implicit	

consensus	on	 the	semantic	distribution	of	 features	without	requiring	 to	be	exposed	to	

the	 exact	 same	 data.	 This	 constitutes	 a	 primary	 language	 learning	 mechanism	 that	

captures	and	defines	the	acquired	semantic	space	of	an	individual	while	assuring	a	high	

degree	 of	 compatibility	 with	 the	 semantic	 space	 of	 his/her	 peers.	 Every	 word	 is	

semantically	grounded	by	expressing	it	as	a	binary	distribution	of	these	context	features,	

which	are	themselves	distributed	across	the	learned	semantic	space.	



Semantic	Folding	Theory	

Vienna,	March	2016	 23	

The	 primary	 acquisition	 of	 the	 2D-semantic	 space	 as	 a	 distributional	 reference	

for	 the	 encoding	 of	 word	meaning	 is	 called	 Semantic	 Folding.	 In	more	 formal	 terms:	

every	word	is	characterized	by	the	list	of	contexts	in	which	it	appears.	A	context	being	

itself	the	list	of	terms	encountered	in	a	previously	stored	SCE	(utterance	or	text	snippet).	

	

	
	

Fig.		6:	Creation	of	a	simple	1D-word-vector	

This	one-dimensional	vector	could	be	directly	used	to	represent	every	word.	But	

to	unlock	the	advantages	of	Semantic	Folding,	a	second	mapping	step	is	introduced	that	

not	only	captures	the	co-occurrence	information	but	also	the	semantic	relations	among	

contexts	to	enable	understanding	through	the	similarity	of	distributions.	

Technically	speaking,	the	contexts	represent	vectors	that	can	be	used	to	create	a	

two-dimensional	map	 in	 such	 a	way	 that	 similar	 context-vectors	 are	 placed	 closer	 to	

each,	 using	 topological	 (local)	 inhibition	 mechanisms	 and/or	 by	 using	 competitive	

Hebbian	learning	principles.	
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Fig.		7:	Distribution	of	the	contexts	on	the	semantic	2D	map	

This	results	in	a	2D-map	that	associates	a	coordinate	pair	to	every	context	in	the	

repository	 of	 contexts	 (the	 sum	 of	 all	 perceived	 SCEs).	 This	mapping	 process	 can	 be	

maintained	dynamically	by	always	positioning	a	newly	perceived	SCE	onto	the	map,	and	

is	even	capable	of	growing	the	map	on	its	borders	if	new	words	or	new	concepts	appear.		

Every	perceived	SCE	 strengthens,	adjusts	or	extends	 the	existing	 semantic	

map.	

This	map	is	then	used	to	encode	every	single	word	by	associating	a	binary	vector	

with	 each	word,	 containing	 a	 “1”,	 if	 the	word	 is	 contained	 in	 the	 context	 at	 a	 specific	

position	and	a	“0”	if	not,	for	all	positions	in	the	map.	
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Fig.		8:	Encoding	of	a	word	as	word-SDR	

After	serialization,	we	have	a	binary	vector	that	has	a	natural	SDR	format:	

• A	word	typically	appears	only	in	a	very	small	number	of	the	stored	contexts.	The	

vector	is	therefore	sparse.	

• Although	 the	 vector	 is	 used	 in	 its	 serialized	 notation,	 the	 neighboring	

relationships	 between	 the	 different	 positions	 are	 still	 governed	 by	 the	 2D	

topology,	corresponding	to	a	topological	2D-distribution.	

• If	 a	 set	 bit	 shifts	 its	 position	 (up,	 down,	 left	 or	 right),	 it	 will	 misleadingly	

represent	 a	 different	 adjacent	 context.	 But	 as	 adjacent	 contexts	 have	 a	 very	

similar	meaning	 due	 to	 the	 folded-in	map,	 the	 error	will	 be	 negligible	 or	 even	

unnoticeable	representing	a	high	noise	resistance.	

• Words	with	similar	meanings	look	similar	due	to	the	topological	arrangement	of	

the	individual	bit-positions.	

• The	 serialized	 word-SDRs	 can	 be	 efficiently	 compressed	 by	 only	 storing	 the	

indices	of	the	set	bits.	

• The	 serialized	 word-SDRs	 can	 be	 subsampled	 to	 a	 high	 degree	 without	 losing	

significant	semantic	information.	

• Several	 serialized	 word-SDRs	 can	 be	 aggregated	 using	 a	 bitwise	 OR	 function	

without	losing	any	information	brought	in	by	any	of	the	union’s	members.	

Metric	Word	Space	

The	 set	 of	 all	 possible	 word-SDRs	 corresponds	 to	 a	 word-vector-space.	 By	

applying	 a	 distance	 metric	 (like	 Euclidian	 distance)	 that	 represents	 the	 semantic	
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closeness	 of	 two	 words,	 the	 word-SDR	 space	 satisfies	 the	 requirements	 of	 a	 metric	

space:	

• Distances	between	words	are	always	non-negative.	

• If	 the	 distance	 between	 two	 words	 is	 0	 then	 the	 two	 words	 are	 semantically	

identical	(perfect	synonyms).	

• If	 two	 words	 A	 and	 B	 are	 in	 a	 distance	 d	 from	 each	 other,	 d(A,B)	 =	 d(B,A).	

(Symmetry).	

• For	 three	 distinct	 words	 A,	 B,	 C	 we	 have	 d(A,C)	 <=	 d(A,B)	 +	 d(B,C).	 (Triangle	

inequality).	

By	 considering	 the	word-SDR	 space	 as	 a	metric	 space,	we	 can	 revert	 to	 a	 rich	

research	 corpus	 of	 mathematical	 properties,	 characteristics	 and	 tools	 that	 find	 their	

correspondence	in	the	metric	space	representation	of	natural	language.	

Similarity	

Similarity	is	the	most	fundamental	operation	performed	in	the	metric	word-SDR-

space.	 Similarity	 should	 not	 be	 directly	 interpreted	 as	 word	 synonymy,	 as	 this	 only	

represents	a	special	case	of	semantic	closeness	that	assumes	a	specific	type	of	distance	

measure,	feature	selection	and	arrangement.	Similarity	should	be	seen	as	a	more	flexible	

concept	that	can	be	tuned	to	many	different,	language	relevant	nuances	like:	

- Associativity	

- Generalization	

- Dependency	

- Synonymy	

- Etc.	

The	actual	distance	measure	used	to	calculate	similarity	can	be	varied	depending	

on	the	goal	of	the	operation.	As	the	word-SDR	vectors	are	composed	of	binary	elements,	

the	 simplest	 distance	measure	 consists	 in	 calculating	 the	 binary	 overlap.	 Two	 vectors	

are	 close	 if	 the	 number	 of	 overlapping	 bits	 is	 large.	 But	 care	must	 be	 taken,	 as	 very	

unequal	word-frequencies	can	lead	to	misinterpretations.	By	comparing	a	very	frequent	

word	that	has	many	set-bits	with	a	rare	word	having	a	small	number	of	set-bits,	even	a	

full	overlap	would	only	result	in	the	small	number	of	overlap-bits	corresponding	to	the	

number	of	ones	in	the	low-frequency	term.	
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Other	distance/similarity	measures	that	could	be	applied:	

- Euclidian	distance	

- Hamming	distance	

- Jaccard	similarity	

- Cosine	similarity	

- Levenshtein	distance	

- Sørensen–Dice	index	

- Etc.	

Dimensionality	in	Semantic	Folding	

The	Semantic	Folding	process	 takes	symbolic	word	representation	as	 input	and	

converts	it	into	an	n-dimensional	SDR-vector	that	is	semantically	grounded	through	the	

2D	materialization-step	of	the	semantic	map.	

The	 main	 reason	 to	 choose	 a	 2D-map	 over	 any	 other	 possible	 dimensionality	

primarily	 lies	 in	 the	 fact	 that	 the	 word-SDRs	 are	 intended	 to	 be	 fed	 into	 cortical	

processing	 systems	 that	 in	 turn	 try	 to	 implement	 cortical	 processing	 schemes,	 which	

happen	to	have	evolved	into	a	2D	arrangement.		

In	 order	 to	 achieve	 actual	 materialization	 of	 the	 word-SDRs,	 the	 neighboring	

relationships	 of	 adjacent	 bits	 in	 the	 data	 should	 directly	 translate	 to	 the	 topological	

space	 of	 neo-cortical	 circuits.	 Without	 successful	 materialization	 of	 the	 word-SDRs,	

semantic	grounding	would	not	be	possible,	making	inter-individual	communication	-	the	

primary	purpose	of	language	-	extremely	unreliable,	if	not	impossible.		

To	 propagate	 the	 map-topology	 throughout	 the	 whole	 cortical	 extent,	 all	

afferences	 and	 efferences	 to	 or	 from	 a	 specific	 cortical	 area	 have	 to	 maintain	 their	

topological	arrangement.	These	projections	can	be	 links	between	regions	or	pathways	

between	sensory	organs	and	the	cortical	receptive	fields.			

If	 we	 consider	 the	 hypothetical	 word-SDR	 layer	 in	 the	 human	 cortex	 to	 be	 a	

receptive	field	for	language,	the	similarity	to	all	other	sensorial	input	systems,	using	data	

in	a	2D	arrangement,	becomes	obvious:	

• The	 organ	 of	 Corti	 in	 the	 cochlea	 is	 a	 sheet	 of	 sensorial	 cells,	where	 every	 cell	

transmits	a	specific	piece	of	sound	information	depending	on	where	on	the	sheet	

it	is	positioned.	
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• Touch	 is	 obviously	 generating	 topological	 information	 of	 the	 2D	 surface	 of	 the	

body	skin.	

• The	Retina	 is	a	2D	structure	where	 two	neighboring	pixels	have	a	much	higher	

probability	of	belonging	to	the	same	object	than	two	distant	ones.	

Topographic	 projection	 seems	 to	 be	 a	 main	 neuro-anatomic	 principle	 that	

maintains	an	ordered	mapping	from	a	sensory	surface	to	its	associated	cortical	receptive	

structures.	This	 constitutes	another	 strong	argument	 for	using	a	2D	semantic	map	 for	

Semantic	Folding.	

Language	for	Cross-Brain	Communication	

It	 seems	 reasonable	 to	 assume	 that	 a	 major	 reason	 for	 the	 development	 of	

language	 is	 the	 possibility	 for	 efficient	 communication.	 In	 the	 context	 currently	

discussed,	communication	can	be	described	as	the	capability	to	send	a	representation	of	

the	current	(neo-cortical)	brain	state	to	another	individual	who	can	then	experience	or	

at	least	infer	the	cortical	status	of	the	sender.	In	this	case,	the	sensorial	afferences	of	one	

neo-cortex	could	become	part	of	the	input	of	a	second	neo-cortex	that	might	process	this	

compound	 data	 differently	 than	 the	 sender,	 as	 it	 accesses	 a	 different	 local	 SCE	

repository.	The	receiving	individual	can	then	communicate	this	new,	alternative	output	

state	 back	 to	 the	 first	 individual,	 therefore	 making	 cooperation	 much	 easier.	 In	

evolutionary	biology	terms,	this	mechanism	can	be	regarded	as	a	way	of	extending	the	

cortical	area	beyond	the	 limits	of	a	single	subject	by	extending	 information	processing	

from	one	brain	 to	 the	cortical	 real	estate	of	 social	peers.	The	evolutionary	advantages	

resulting	from	this	extended	cortical	processing	are	the	same	that	drove	the	growing	of	

the	neo-cortex	 in	the	 first	place:	higher	computational	power	or	 increased	 intelligence	

by	extending	the	overall	cortical	real	estate	available	to	interpret	the	current	situational	

sensory	input.	

Although	every	individual	uses	his	proprietary	version	of	a	semantic	map	formed	

along	 his	 ontogenetic	 development,	 it	 is	 interesting	 to	 note	 that	 this	 mechanism	

nevertheless	 works	 efficiently.	 As	 humans	 who	 live	 in	 the	 same	 vicinity	 share	 many	

genetic,	 developmental	 and	 social	 parameters,	 the	 chance	 of	 their	 semantic	 maps	

evolving	in	a	very	similar	fashion	is	high:	they	speak	the	same	language,	therefore	their	

semantic	maps	have	a	large	overlap.	The	farther	apart	two	individuals	are,	regardless	of	
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whether	this	is	measured	by	geographical,	socio-cultural	or	environmental	distance,	the	

smaller	the	overlap	of	their	maps	will	be,	making	communication	harder.	

By	 developing	 techniques	 to	 record	 and	 playback	 language,	 such	 as	 writing	

systems,	it	became	possible	to	not	only	make	brain	states	available	over	space	but	also	

over	time.	This	created	a	fast	way	to	expose	the	cortex	of	an	individual	to	a	large	set	of	

historically	 accumulated	 Special	 Case	 Experiences	 (brain-states),	which	 equally	 led	 to	

incremental	improvement	of	the	acquired	cortical	ability	to	make	useful	interpretations	

and	predictions.		
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Part	2:	Semantic	Fingerprinting	

Theoretical	Background	

HTM	 Theory	 and	 Semantic	 Folding	 Theory	 are	 both	 based	 on	 the	 same	

conceptual	 foundations.	 They	 aim	 to	 apply	 the	 newest	 findings	 in	 theoretical	

neuroscience	to	the	emerging	field	of	Machine	Intelligence.	The	two	technologies	work	

together	 in	 a	 complementary	 fashion,	Cortical.io’s	 Semantic	Folding	 is	 the	encoder	 for	

the	 incoming	 stream	of	 data,	 and	Numenta’s	NuPIC	 (Numenta	Platform	 for	 Intelligent	

Computing)	is	the	intelligent	backend.	

Cortical.io	has	implemented	Semantic	Folding	as	a	product	called	Retina	API,	that	

enables	the	conversion	of	text	data	into	a	cortex	compatible	representation	-	technically	

called	 Sparse	 Distributed	 Representation	 (SDR)	 -	 and	 the	 operation	 of	 similarity	 and	

Boolean	computations	on	these	SDRs.	

Hierarchical	Temporal	Memory	

The	Hierarchical	Temporal	Memory	(HTM)	theory	 is	a	 functional	 interpretation	

of	practical	findings	in	neuroscience	research.	 	HTM	theory	sees	the	human	neo-cortex	

as	a	2D	sheet	of	modular,	homologous	microcircuits	that	are	organized	as	hierarchically	

interconnected	 layers.	 Every	 layer	 is	 capable	 of	 detecting	 frequently	 occurring	 input	

patterns	and	learning	time-based	sequences	thereof.		

The	 data	 is	 fed	 into	 an	 HTM	 layer	 in	 the	 form	 of	 Sparse	 Distributed	

Representations.	

SDRs	 are	 large	 binary	 vectors	 that	 are	 very	 sparsely	 filled,	 with	 every	 bit	

representing	 distinct	 semantic	 information.	 According	 to	 the	 HTM	 theory,	 the	 human	

neo-cortex	is	not	a	processor	but	a	memory	system	for	SDR	pattern	sequences.	

When	 an	HTM	 layer	 is	 exposed	 to	 a	 stream	 of	 input	 data,	 it	 starts	 to	 generate	

predictions	 of	what	 it	 thinks	would	 be	 the	 next	 incoming	 SDR	pattern	 based	 on	what	

patterns	it	has	seen	so	far.	 In	the	beginning,	the	predictions	will,	of	course,	differ	from	

the	 actual	 data	 but	 a	 few	 cycles	 later	 the	 HTM	 layer	will	 quickly	 converge	 and	make	

more	 correct	 predictions.	 This	 prediction	 capability	 can	 explain	 many	 behavioral	

manifestations	of	intelligence.		
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Semantic	Folding	

In	order	to	apply	HTM	to	a	practical	problem,	it	is	necessary	to	convert	the	given	

input	data	into	the	SDR	format.	What	characterizes	SDRs?	

• SDRs	are	large	binary	vectors	(from	several	thousands	to	many	millions	of	bits).	

• SDRs	have	a	very	small	fraction	of	their	bits	set	to	“1”	at	a	specific	point	in	time.		

• Similar	data	looks	similar	when	converted	into	SDR	format.	

• Every	bit	in	the	SDR	has	specific	(accountable)	meaning.	

• The	union	of	several	SDRs	results	in	an	SDR	that	still	contains	all	the	information	

of	its	constituent	SDRs.		

	

The	process	of	Semantic	Folding	encompasses	the	following	steps:	

• Definition	of	a	reference	text	corpus	of	documents	that	represents	the	Semantic	

Universe	the	system	is	supposed	to	work	in.	The	system	will	know	all	vocabulary	

and	its	practical	use	as	it	occurs	in	this	Language	Definition	Corpus	(LDC).		

• Every	document	from	the	LDC	is	cut	into	text	snippets	with	each	snippet	

representing	a	single	context.	

• The	reference	collection	snippets	are	distributed	over	a	2D	matrix	(e.g.	128x128	

bits)	in	a	way	that	snippets	with	similar	topics	(that	share	many	common	words)	

are	placed	closer	to	each	other	on	the	map,	and	snippets	with	different	topics	

(few	common	words)	are	placed	more	distantly	to	each	other	on	the	map.	This	

produces	a	2D	semantic	map.	

• In	the	next	step,	a	list	of	every	word	contained	in	the	reference	corpus	is	created.	

• By	going	down	this	list	word	by	word,	all	the	contexts	a	word	occurs	in	are	set	to	

“1”	in	the	corresponding	bit-position	of	a	2D	mapped	vector.	This	produces	a	

large,	binary,	very	sparsely	filled	vector	for	each	word.	This	vector	is	called	the	

Semantic	Fingerprint	of	the	word.	The	structure	of	the	2D	map	(the	Semantic	

Universe)	is	therefore	folded	into	each	representation	of	a	word	(Semantic	

Fingerprint).	The	list	of	words	with	their	fingerprints	is	stored	in	a	database	that	

is	indexed	to	allow	for	fast	matching.	The	system	that	converts	a	given	word	into	

a	fingerprint	is	called	the	Retina,	as	it	acts	as	a	sensorial	organ	for	text.	The	

fingerprint	database	is	called	the	Retina	Database	(Retina	DB).		
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Retina	DB	

The	Retina	DB	consists	of	actual	utterances	that	are	distributed	over	a	128x128	

grid.	At	each	point	of	the	matrix	we	find	one	to	several	text	snippets.	Their	constituent	

words	represent	the	topic	 located	at	 this	position	 in	the	semantic	space.	The	choice	of	

implementing	the	semantic	space	as	a	2D	structure	is	in	analogy	to	the	fact	that	the	neo-

cortex	itself,	 like	all	biological	sensors	(e.g.	the	retina	in	the	eye,	the	Corti	organ	in	the	

ear,	the	touch	sensors	in	the	skin	etc.),	is	arranged	as	a	2	dimensional	grid.	

The	Language	Definition	Corpus	

By	 selecting	Wikipedia	 documents	 to	 represent	 the	 language	 definition	 corpus,	

the	 resulting	 Retina	 DB	will	 cover	 general	 English.	 If,	 on	 the	 contrary,	 a	 collection	 of	

documents	 from	 the	 PubMed	 archive	 is	 chosen,	 the	 resulting	 Retina	 DB	 will	 cover	

medical	English.	A	LDC	collection	of	Twitter	messages	will	lead	to	a	“Twitterish”	Retina.	

The	same	is,	of	course,	true	for	other	languages:	The	Spanish	or	French	Wikipedia	would	

lead	to	general	Spanish	or	general	French	Retinas.	

The	 size	 of	 the	 generated	 text	 snippets	 determines	 the	associativity	bias	 of	 the	

resulting	Retina.	If	the	snippets	are	kept	very	small,	(1-3	sentences)	the	word	Socrates	is	

linked	 to	 synonymous	 concepts	 like	Plato,	Archimedes	 or	Diogenes.	 The	bigger	 the	 text	

snippets	are,	the	more	the	word	Socrates	is	linked	to	associated	concepts	like	philosophy,	

truth	 or	discourse.	 In	practice,	 the	bias	 is	 set	 to	a	 level	 that	best	matches	 the	problem	

domain.	

Definition	of	a	General	Semantic	Space	

In	order	to	achieve	cross	language	functionality,	a	Retina	for	each	of	the	desired	

languages	has	 to	be	 generated	while	 keeping	 the	 topology	of	 the	underlying	 semantic	

space	the	same.	As	a	result,	the	fingerprint	for	a	specific	concept	like	philosophy	is	nearly	

the	same	in	all	languages	(having	a	similar	topology).	

Tuning	the	Semantic	Space	

By	 creating	 a	 specific	 Retina	 for	 a	 given	 domain,	 all	 word-fingerprints	 make	

better	 use	 of	 the	 available	 real	 estate	 of	 the	 128x128	 area,	 therefore	 improving	 the	

semantic	resolution.	

Tuning	a	Retina	means	 selecting	 relevant	 representative	 training	material.	This	

content	 selection	 task	 can	 be	 best	 carried	 out	 by	 a	 domain	 expert,	 in	 contrast	 to	 the	
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optimization	of	abstract	algorithm	parameters	that	traditionally	require	the	expertise	of	

computer	scientists.		

REST	API	

The	 Retina	 engine,	 as	 well	 as	 an	 exemplary	 English	 Wikipedia	 Database,	 is	

available	as	a	freely	callable	REST	API	for	experimentation	and	testing.	

A	 web	 accessible	 sandbox	 can	 be	 used	 by	 pointing	 a	 browser	 to	

http://api.cortical.io.	All	functionalities	described	in	this	document	can	be	interactively	

tested	there.	

A	first	call	to:		

API:	/retina	endpoint.	Get	information	on	the	available	Retina	

will	return	specifics	for	the	published	Retinas.	
[ 

  { 
    "retinaName": "en_associative", 

    "description": "An English language retina balancing synonymous 

and associative similarity.", 

    "numberOfTermsInRetina": 854523, 
    "numberOfRows": 128, 

    "numberOfColumns": 128 

  } 

] 
 

Fig.		9:	Calling	the	Retina	API	to	get	information	on	the	Retina	Database	

Word-SDR	–	Sparse	Distributed	Word	Representation	

With	the	Retina	API	it	is	possible	to	convert	any	given	word	(stored	in	the	Retina	

DB)	 into	 a	word-SDR.	 These	word-SDRs	 constitute	 the	 Semantic	Atoms	 of	 the	 system.	

The	word-SDR	is	a	vector	of	16,384	bits	(128x128)	where	every	bit	stands	for	a	concrete	

context	 (topic)	 that	 can	 be	 realized	 as	 a	 bag	of	words	 of	 the	 training	 snippets	 at	 this	

position.	

Due	to	the	topological	arrangement	of	the	word-SDRs,	similar	words	like	dog	and	

cat	 do	 actually	 have	 similar	 word-SDRs.	 The	 similarity	 is	 measured	 in	 the	 degree	 of	

overlap	between	the	two	representations.	In	contrast,	the	words	dog	and	truck	have	far	

fewer	overlapping	bits.	

http://api.cortical.io
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Term	to	Fingerprint	Conversion	

At	the	

API:	/terms	endpoint.	Convert	any	word	into	its	fingerprint		

the	word	apple	can	be	converted	into	the	Semantic	Fingerprint	that	is	rendered	as	a	list	

of	indexes	of	all	set	bits:	

	
["fingerprint": { 
      "positions": [ 

        
1,2,3,5,6,7,34,35,70,77,102,122,125,128,129,130,251,252,255,258,31
9,379,380,381,382,383,385,389,392,423,507,508,509,510,511,513,517,
535,551,592,635,636,637,638,639,641,643,758,764,765,766,767,768,77
1,894,900,1016,1017,1140,1141,1143,1145,1269,1270,1271,1273,1274,1

275,1292,1302,1361,1397,1398,1399,1400,1401,1402,1403,1407,1430,15
26,1527,1529,1531,1535,1655,1656,1657,1658,1659,1716,1717,1768,178
5,1786,1788,1790,1797,1822,1823,1831,1845,1913,1915,1916,1917,1918
,1931,2020,2035,2043,2044,2046,2059,2170,2176,2298,2300,2302,2303,
2309,2425,2512,2516,2517,2553,2554,2630,2651,2682,2685,2719,2766,2

767,2768,2773,2901,3033,3052,3093,3104,3158,3175,3176,3206,3286,32
91,3303,3310,3344,3556,3684,3685,3693,3772,3812,3940,3976,3978,397
9,4058,4067,4068,4070,4104,4105,4194,4196,4197,4198,4206,4323,4324
,4361,4362,4363,4377,4396,4447,4452,4454,4457,4489,4572,4617,4620,
4846,4860,4925,4970,4972,5023,5092,5106,5113,5114,5134,5174,5216,5

223,5242,5265,5370,5434,5472,5482,5495,5496,5497,5498,5607,5623,57
51,5810,6010,6063,6176,6221,6336,6783,7174,7187,7302,7427,7430,754
5,7606,7812,7917,7935,8072,8487,8721,8825,8827,8891,8894,8895,8896
,8898,8899,8951,9014,9026,9033,9105,9152,9159,9461,9615,9662,9770,

9779,9891,9912,10018,10090,10196,10283,10285,10416,10544,10545,105
86,10587,10605,10648,10649,10673,10716,10805,10809,10844,10935,109
36,11050,11176,11481,11701,12176,12795,12811,12856,12927,12930,129
31,13058,13185,13313,13314,13442,13669,14189,14412,14444,14445,144
46,14783,14911,15049,15491,15684,15696,15721,15728,15751,15752,158

33,15872,15875,15933,15943,15995,15996,15997,15998,15999,16000,161
22,16123,16127,16128,16129,16198,16250,16251,16255,16378 
      ] 
    } 
]					
	

Fig.		10:	A	Semantic	Fingerprint	in	JSON	format	as	the	Retina-API	returns	it	

The	 /terms	 endpoint	 also	 accepts	 multi	 word	 terms	 like	 New	 York	 or	 United 
Nations	 and	 is	 able	 to	 represent	 domain	 specific	 phrases	 like	 Director	 of	 Sales and 
Business	 Development or	 please fasten your seat belts	 by	 a	 unique	 Semantic	
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Fingerprint.	This	is	achieved	by	using	the	desired	kind	of	tokenization	during	the	Retina	

creation	process.	

Getting	Context	

In	 order	 to	 get	 back	 words	 for	 a	 given	 Semantic	 Fingerprint	 (“what	 does	 this	

fingerprint	mean?”)	the	following	endpoint	can	be	used:	

API:	/terms/similar_terms	endpoint.	Find	the	closest	matching	Fingerprint	

This	endpoint	can	be	called	to	obtain	the	terms	having	the	most	overlap	with	the	

input	 Fingerprint.	 The	 terms	with	most	 overlap	 constitute	 the	 contextual	 terms	 for	 a	

specific	Semantic	Fingerprint.	

As	 terms	 are	 usually	 ambiguous	 and	 have	 different	 meanings	 in	 different	

contexts,	the	similar	terms	function	returns	contextual	terms	for	all	existing	contexts.	
	

	
	

Fig.		11	Word	Sense	Disambiguation	of	the	word	apple	

The	 fingerprint	 representation	 of	 the	 word	 apple	 contains	 all	 the	 different	

meanings	 like	 computer-related	 meaning,	 fruit-related	 meaning	 or	 records-related	

meaning.	If	we	assume	the	following	sequence	of	operations:	

1) get	the	word	with	the	most	overlap	with	the	word	apple:	the	word	computer 
2) set	all	bits	that	are	shared	between	apple	and	computer	to	“0”	
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3) send	the	resulting	fingerprint	again	to	the	similar	terms	function	and	get:	the	

word	fruit	

4) set	all	bits	that	are	shared	between	the	fingerprint	from	step	2	and	fruit	to	“0”	

5) send	the	resulting	fingerprint	again	to	the	similar	terms	function	and	get:	the	

word	records	

6) …	continue	until	no	more	bits	are	left,		

then	we	have	identified	all	the	contexts	that	this	Retina	knows	for	the	word	apple.	

This	process	can	be	applied	to	all	words	contained	in	the	Retina.	In	fact,	this	form	of	

computational	disambiguation	can	be	applied	to	any	Semantic	Fingerprint.	

API:	/terms/context	endpoint.	Find	the	different	contexts	of	a	term	

Using	 this	 endpoint,	 any	 term	can	be	queried	 for	 its	 contexts.	The	most	 similar	

contextual	 term	 becomes	 the	 label	 for	 this	 context	 and	 the	 subsequent	 most	 similar	

terms	are	 returned.	After	having	 identified	 the	different	 contexts,	 the	 similar	 term	 list	

for	each	of	them	can	be	queried.	

Text-SDR	–	Sparse	Distributed	Text	Representation	

The	 word-SDRs	 represent	 atomic	 units	 and	 can	 be	 aggregated	 to	 create	

document-SDRs	(Document	Fingerprints).	Every	constituent	word	is	converted	into	 its	

Semantic	 Fingerprint.	 All	 these	 fingerprints	 are	 then	 stacked	 and	 the	 most	 often	

represented	features	produce	the	highest	bit	stack.	
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Fig.		12	Aggregation	of	word-SDRs	into	a	text-SDR	

Text	to	Fingerprint	Conversion	

The	bit	stacks	of	the	aggregated	fingerprint	are	now	cut	at	a	threshold	that	keeps	

the	sparsity	of	the	resulting	document	fingerprint	at	a	defined	level.	

	
Fig.		13	The	sparsification	has	an	implicit	disambiguation	effect	
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The	 representational	 uniformity	 of	 word-SDRs	 and	 document-SDRs	 makes	

semantic	computation	easy	and	intuitive	for	documents	of	all	sizes.	

Another	very	useful	 side	effect	 is	 that	of	 implicit	disambiguation.	As	previously	

seen,	 every	word	 has	 feature	 bits	 for	many	 different	 context	 groups	 in	 its	 fingerprint	

rendering.	However,	only	the	bits	of	the	topics	with	the	highest	stacks	will	remain	in	the	

final	 document	 fingerprint.	 All	 other	 (ambiguous	 bits)	 will	 be	 eliminated	 during	

aggregation.	

Fingerprints	of	texts	can	be	generated	using	the	following	endpoint.	

API:	/text	endpoint.	Convert	any	text	into	its	fingerprint	

Based	on	the	text-SDR	mechanism,	it	is	possible	to	dynamically	allow	the	Retina	

to	learn	new,	previously	unseen	words	as	they	appear	in	texts.	

Keyword	Extraction	

The	word-SDRs	also	allow	a	very	efficient	mechanism	to	extract	the	semantically	

most	 important	 terms	 (or	 phrases)	 of	 a	 text.	 After	 internally	 generating	 a	 document-

fingerprint,	each	fingerprint	of	the	constituent	words	is	compared	to	it.	The	smallest	set	

of	word-fingerprints	that	is	needed	to	reconstruct	the	document-fingerprint	represents	

the	semantically	most	relevant	terms	of	the	document.	

API:	/text/keywords	endpoint.	Find	the	key	terms	in	a	piece	of	text	

Semantic	Slicing	

It	is	often	necessary	to	slice	text	into	topical	snippets.	Each	snippet	should	have	

only	one	(main)	topic.	This	is	achieved	by	stepping	through	the	text	word-by-word	and	

sensing	 how	 many	 feature	 bits	 change	 from	 one	 sentence	 to	 the	 next.	 If	 many	 bits	

change	 from	one	 sentence-fingerprint	 to	 the	next,	 it	 can	be	 assumed	 that	 a	new	 topic	

appeared	and	the	text	is	cut	at	this	position.	

API:	/text/slices	endpoint.	Cutting	text	into	topic-snippets	

Expressions	–	Computing	with	fingerprints	

As	all	Semantic	Fingerprints	are	homologous	(they	have	the	same	size	and	their	

feature	 space	 is	 equal),	 they	 can	 be	 used	 directly	 in	 Boolean	 expressions.	 Setting	 and	



Semantic	Folding	Theory	

Vienna,	March	2016	 39	

resetting	 selections	 of	 bits	 can	 be	 achieved	 by	 AND-ing,	 OR-ing	 and	 SUBtracting	

Semantic	Fingerprints	with	each	other.	

	

	
	

Fig.		14	Computing	with	word	meanings	

Subtracting	the	fingerprint	of	Porsche	 from	the	fingerprint	of	 jaguar	means	that	

all	the	sports	car	dots	are	eliminated	in	the	jaguar	fingerprint,	and	that	only	the	big	cat	

dots	are	left.	Similar	but	not	equal	would	be	to	make	an	AND	of	the	jaguar	and	the	tiger	

fingerprints.	

AND-ing	organ	and	 liver	eliminates	all	piano	and	church	dots	(bits)	 initially	also	

present	in	the	organ	fingerprint.	

The	expression	endpoint	at:	

API:	/expressions	endpoint.	Combining	fingerprints	using	Boolean	operators.	

can	be	used	to	create	expressions	of	any	complexity.	

Applying	Similarity	as	the	Fundamental	Operator	

Using	the	Semantic	Fingerprint	representation	for	a	piece	of	text	corresponds	to	

having	 semantic	 features	 in	 a	 metric	 space.	 Vectors	 within	 this	 metric	 space	 are	

compared	 using	 distance	measures.	 The	 Retina	 API	 offers	 several	 different	measures,	

some	of	which	are	absolute,	which	means	that	they	only	take	a	full	overlap	into	account,	

others	also	take	the	topological	vicinity	of	the	features	into	account.	
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Fig.		15	Similar	text	snippets	result	in	similar	fingerprints	

There	are	 two	different	semantic	aspects	 that	can	be	detected	while	comparing	

two	Semantic	Fingerprints:	

• The	absolute	number	of	bits	that	overlap	between	two	fingerprints	describes	the	

semantic	closeness	of	the	expressed	concepts.	

• By	looking	at	the	topological	position	where	the	overlap	happens,	the	shared	

contexts	can	be	explicitly	determined.		

	

	
	

Fig.		16	Distinct	text	snippets	result	in	dissimilar	fingerprints	

Because	 they	 are	 expressed	 through	 the	 combination	 of	 16K	 features,	 the	

semantic	differences	can	be	very	subtle.	
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Comparing	Fingerprints	

API:	/compare	endpoint.	Calculating	the	distance	of	two	Fingerprints	

The	comparison	of	two	Semantic	Fingerprints	is	a	purely	mathematical	(Boolean)	

operation	that	is	independent	of	the	Retina	used	to	generate	the	fingerprints.	

This	makes	the	operation	very	fast,	as	only	bits	are	compared,	but	also	very	scalable,	as	

every	comparison	constitutes	an	independent	computation	and	can	therefore	be	spread	

across	as	many	threads	as	needed	to	stay	in	a	certain	timing	window.	

Graphical	Rendering	

API:	/image/compare	endpoint.	Display	the	comparison	of	two	Fingerprints	

For	convenience,	image	representation	of	Semantic	Fingerprints	can	be	obtained	

from	the	image	endpoint,	to	be	included	in	GUIs	or	rendered	reports.	

Application	Prototypes	

Based	 on	 the	 fundamental	 similarity	 operation,	 many	 higher-level	 NLP	

functionalities	can	be	built.	The	higher-level	functions	in	turn	represent	building	blocks	

that	can	be	included	in	many	different	business	cases.	

Classification	of	Documents	

Traditionally,	 document	 classifiers	 are	 defined	 by	 providing	 a	 sufficiently	 large	

number	 of	 pre-classified	 documents	 and	 then	 by	 training	 the	 classifier	 with	 these	

training	documents.	The	difficulty	of	 this	approach	 is	 that	many	complex	classification	

tasks	 across	 a	 larger	 number	 of	 classes	 require	 large	 amounts	 of	 correctly	 labeled	

examples.	The	resulting	classifier	quality	degrades	in	general	with	the	number	of	classes	

and	their	(semantic)	closeness.	
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Fig.		17	Classification	using	Semantic	Fingerprints	

With	Semantic	Fingerprints,	there	is	no	need	to	train	the	classifier.	The	only	thing	

needed	 is	 a	 reference	 fingerprint	 that	 specifies	 an	 explicit	 set	 of	 semantic	 features	

describing	a	class.	This	reference	set	or	semantic	class	skeleton	can	be	obtained	either	

through	direct	description	by	enumerating	a	small	number	of	generic	class	features	and	

creating	 a	 Semantic	 Fingerprint	 of	 this	 list	 (for	 example	 the	 three	words	 “mammal”	+	

“mammals”	 +	 “mammalian”),	 or	 by	 formulating	 an	 expression.	 By	 computing	 the	

expression:	 “tiger”	 AND	 “lion”	 AND	 “panther”,	 a	 Semantic	 Fingerprint	 is	 created	 that	

specifies	big	cat	features.	

	

For	the	creation	of	subtler	classes,	the	classify	endpoint:	

API:	/classify/create_category_filter	endpoint.	Create	a	category	filter	for	a	classifier	

can	be	used	to	create	optimized	category	filters	based	on	a	couple	of	example	

documents.	The	creation	of	a	filter	fingerprint	has	close	to	no	latency	(compared	to	the	

usual	classifier	training	process),	which	makes	on	the	fly	classification	possible.	

The	actual	classification	process	is	done	by	generating	a	text	fingerprint	for	each	

document	and	comparing	it	with	each	category	filter	fingerprint.	By	setting	the	

(similarity)	cut-off	threshold	accordingly,	the	classification	sensitivity	can	be	set	

optimally	for	each	business	case.	As	the	cutoff	is	specified	relative	to	the	actual	semantic	

closeness,	it	does	not	cause	any	deterioration	in	recall.		
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Content	Filtering	Text	Streams	

Filtering	 text	 streams	 is	 also	 done	 using	 the	 fingerprint	 classifier	 described	

before.	The	main	difference	 is	 that	 the	documents	do	not	preexist	but	are	classified	as	

they	 come	 in.	 The	 streaming	 text	 sources	 can	 be	 of	 any	 kind	 like	 tweets,	 news,	 chat,	

Facebook	posts	etc.	

	

	
Fig.		18	Filtering	the	Twitter	fire	hose	in	real-time	

Since	 the	 Semantic	 Fingerprint	 comparison	 process	 is	 extremely	 efficient,	 the	

content	 filtering	 can	 easily	 keep	 up	with	 high	 frequency	 sources	 like	 the	 Twitter	 fire	

hose	in	real-time,	even	on	very	moderate	hardware.	

Searching	Documents	

Using	document	similarity	for	enterprise	search	has	been	on	the	agenda	of	many	

products	 and	 solutions	 in	 the	 field.	 Widespread	 use	 of	 the	 approach	 has	 not	 been	

reached	 mainly	 because,	 lacking	 an	 adequate	 document	 (text)	 representation,	 no	

distance	 measures	 could	 be	 developed	 that	 could	 keep-up	 with	 the	 more	 common	

statistical	search	models.	

With	 the	 Retina	 engine,	 searching	 is	 reduced	 to	 the	 task	 of	 comparing	 the	

fingerprints	of	all	stored	(indexed)	documents	with	a	query	fingerprint	that	has	either	
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been	generated	by	an	example	document	(“Show	me	other	documents	like	this	one”)	or	

by	typing	in	a	description	of	what	to	look	for	(“Acts	of	vengeance	of	medieval	kings”).	

	

	
	

Fig.		19:	A	similarity	based	configuration	of	a	search	system	

After	the	query	fingerprint	is	generated,	the	documents	are	ordered	by	increasing	

distance.	In	contrast	to	traditional	search	engines,	where	a	separate	ranking	procedure	

needs	 to	be	defined,	 the	 fingerprint-based	search	process	generates	an	 intrinsic	order	

for	 the	result	 set.	Additionally,	 it	 is	possible	 to	provide	personalized	results	by	simply	

allowing	the	user	to	specify	two	or	three	documents	that	relate	to	his/her	 interests	or	

working	 domain	 (without	 needing	 to	 be	 directly	 related	 to	 the	 actual	 search	 query).	

These	 user-selected	 domain	 documents	 are	 used	 to	 create	 a	 user-profile-fingerprint.	

Now	the	query	is	again	executed	and	the	(for	example)	100	most	similar	documents	are	

selected	 and	 are	 now	 sorted	 by	 increasing	 distance	 from	 the	 profile-fingerprint.	 Like	

this,	 two	 different	 users	 can	 cast	 the	 same	 search	 query	 on	 the	 same	 document	

collection	and	get	different	results	depending	on	their	topical	preferences.	

Real-Time	Processing	Option	

The	Retina	API	has	been	implemented	as	an	Apache	Spark	module	to	enable	 its	

use	within	the	Cloudera	infrastructure.	This	makes	it	possible	to	smoothly	handle	large	

text	data	loads	of	several	terabytes	and	potentially	even	petabytes.	
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The	ability	to	distribute	fingerprint	creation,	comparison	etc.	across	an	arbitrarily	

large	cluster	of	machines	makes	it	possible	to	do	real-time	processing	of	data	streams	in	

order	to	immediately	send	a	trigger,	if	some	specific	semantic	constellations	occur.	

Document	collections	of	any	size	can	be	classified,	simplifying	the	application	of	

Big	Data	approaches	to	unstructured	text	by	orders	of	magnitude.	

The	 efficiency	 of	 the	 Retina	 API	 combined	 with	 the	 workload	 aggregation	

capability	of	 large	clusters	brings	 index	free	searching	 for	the	first	time	within	reach	of	

real-world	 datasets.	 By	 just	 implementing	 a	 brute	 force	 comparison	 of	 all	 document	

fingerprints	with	the	query	fingerprint,	an	index	creation	is	not	needed	anymore.	Most	

of	 the	 costs	 in	 maintenance	 and	 IT	 infrastructure	 related	 to	 large	 search	 systems	

originate	from	the	creation,	updating	and	management	operations	on	the	index.	

In	 an	 index-free	 search	 system,	 any	 previously	 stored	 document	 can	 be	 found	

within	microseconds.	

Using	the	Retina	API	with	an	HTM	Backend	

As	stated	in	the	beginning,	HTM	and	Semantic	Folding	share	the	same	theoretical	

foundations.	All	functionality	described	so	far	is	solely	based	on	taking	advantage	of	the	

conversion	of	text	into	a	SDR	format.		

In	the	following,	the	combination	of	the	Retina	API	as	text-data	encoder	with	the	

HTM	backend	as	sequence	learner	is	used	in	a	Text	Anomaly	Detection	configuration.	

	

	

	
	

Fig.		20	Text	Anomaly	Detection	using	a	HTM	backend	

Being	 exposed	 to	 a	 stream	 of	 text-SDRs,	 the	 HTM	 network	 learns	 word	

transitions	and	combinations	that	occur	in	real	world	sources.	Based	on	the	(text)	data	it	
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was	exposed	to,	the	system	constantly	predicts	what	(word)	it	expects	next.	If	the	word	

it	predicted	is	semantically	sufficiently	close	to	the	word	actually	seen,	the	transition	is	

strengthened	 in	 the	 HTM.	 If,	 on	 the	 other	 hand,	 an	 unexpected	word	 (having	 a	 large	

semantic	distance)	occurs,	an	anomaly	signal	is	generated.	

Advantages	of	the	Retina	API	Approach	

Simplicity	

1. No	Natural	Language	Processing	skills	are	needed.	

2. Training	of	the	system	is	fully	unsupervised	(no	human	work	needed).	

3. Tuning	of	the	system	is	purely	data	driven	and	only	requires	domain	experts	and	

no	specialized	technical	staff.	

4. The	API	provided	is	very	simple	and	intuitive	to	utilize.	

5. The	technology	can	be	easily	integrated	into	larger	systems	by	incorporating	the	

API	over	REST	or	by	the	inclusion	of	a	plain	Java	library	with	no	external	

dependencies	for	local	(Cloudera/Apache	Spark)	deployments.	

Quality	

1. Rich	semantic	feature	set	of	16K	features	allows	a	fine-grained	representation	of	

concepts.	

2. All	semantic	features	are	self-learned,	thus	reducing	semantic	bias	in	the	

language	model	used.	

3. The	descriptive	features	are	explicit	and	semantically	grounded	and	can	be	

inspected	for	the	interpretation	of	any	generated	results.	

4. By	drastically	reducing	the	vocabulary	mismatch,	far	less	false	positive	results	

are	generated.		

Speed	

1. Encoding	the	semantics	in	binary	form	(instead	of	the	usual	floating	point	

matrices)	provides	orders	of	magnitudes	of	speed	improvement	over	traditional	

methods.	

2. All	Semantic	Fingerprints	have	the	same	size,	which	allows	for	an	optimal	

processing	pipeline	implementation.	
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3. The	semantic	representations	are	pre-calculated	and	therefore	don’t	affect	the	

query	response	time.	

4. The	algorithms	only	apply	independent	calculations	(no	corpus	relative	

computation)	and	are	therefore	easily	scale	to	any	performance	needed.	

5. The	similarity	algorithm	can	be	easily	implemented	in	hardware	(FPGA	&	Gate	

Array	technology)	to	achieve	even	further	performance	improvements.	In	a	

document	search	context,	the	specialized	hardware	could	provide	a	stable	query	

response	time	of	<	5	microseconds,	independently	of	the	size	of	the	searched	

collection.	

Cross-Language	Ability	

If	 aligned	 semantic	 spaces	 for	 different	 languages	 are	 used,	 the	 resulting	

fingerprints	become	language	independent.	

	

	
	

Fig.		21	Language	independence	of	Semantic	Fingerprints	

This	means	that	an	English	message-fingerprint	can	be	directly	matched	with	an	

Arabic	 message-fingerprint.	 When	 filtering	 text	 sources,	 the	 filter	 criterion	 can	 be	

designed	 in	English	while	being	directly	applied	 to	all	other	 languages.	An	application	

can	be	developed	using	the	English	Retina	while	being	deployed	with	a	Chinese	one.	

Outlook	

A	Retina	System	can	be	used	wherever	 language	models	are	used	 in	 traditional	

NLP	 systems.	 Upcoming	 experimental	 work	will	 show	 if	 using	 a	 Retina	 system	 could	

improve	 Speech	 to	 Text,	 OCR	 or	 Statistical	 Machine	 Translation	 systems	 as	 they	 all	

generate	 candidate	 sentences	 from	 which	 they	 have	 to	 choose	 the	 final	 response	 by	

taking	the	semantic	context	into	account.	
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Another	active	field	of	research	is	to	find	out	if	numeric	measurements	could	also	

be	interpreted	as	semantic	entities	like	words.	In	this	case	the	semantic	grounding	is	not	

done	by	folding	a	collection	of	reference	texts	 into	the	representation	but	by	using	 log	

files	of	historic	measurements.	The	correlation	of	the	measurements	will	follow	system	

specific	dependencies	as	the	correlation	of	words	follow	linguistic	relationships	and	the	

system	represented	by	the	semantic	space	will	not	be	“language”	but	an	actual	physical	

system	from	which	the	sensor	data	has	been	gathered.	

A	third	field	of	research	is	to	develop	a	hardware	architecture	that	could	speed-

up	the	process	of	similarity	computation.	In	very	large	semantic	search	systems,	holding	

billions	of	documents,	 the	 similarity	 computation	 is	 the	only	 remaining	bottleneck.	By	

using	 a	 content	 addressable	 memory	 (CAM)	 mechanism,	 the	 search-by-semantic-

similarity-process	could	reach	very	high	velocities.	
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Part	3:	Combining	the	Retina	API	with	HTM	

Introduction	

It	is	an	old	dream	of	computer	scientists	to	make	the	meaning	of	human	language	

accessible	to	computer	programs.	However,	to	date,	all	approaches	based	on	linguistics,	

statistics	 or	 probability	 calculus	 have	 failed	 to	 come	 close	 to	 the	 sophistication	 of	

humans	 in	 mastering	 the	 irregularities,	 ambiguities	 and	 combinatorial	 explosions	

typically	encountered	in	natural	language.	

Considering	this	fact,	imagine	the	following	experimental	setup:	

Experimental	Setup	

	

	
	

Fig.		22	Overview	of	the	experimental	setup	

• A	Machine	Learning	(ML)	program	that	has	a	number	of	binary	inputs.	This	ML	

program	can	be	 trained	on	sequences	of	binary	patterns	by	exposing	 them	 in	a	

time	series.	The	ML	program	has	predictive	outputs	 that	 try	 to	anticipate	what	

pattern	to	expect	next,	in	response	to	a	specific	anterior	sequence.	

• A	codec	program	that	encodes	an	English	word	into	a	binary	pattern	and	decodes	

any	 binary	 pattern	 into	 the	 closest	 possible	 English	 word.	 The	 codec	 has	 the	

characteristic	of	converting	semantically	close	words	into	similar	binary	patterns	

and	vice	versa.	The	degree	of	similarity	between	two	binary	patterns	is	measured	

using	a	distance	metric	such	as	Euclidian	distance.	

• The	 codec	 operates	 using	 a	 data	 width	 of	 16Kbit	 (16384	 bits)	 so	 that	 every	

English	word	is	encoded	into	a	16Kbit	pattern	(binary	word	vector)	

• The	ML	 program	 is	 configured	 to	 allow	 patterns	 of	 16Kbit	 as	 input	 as	well	 as	

16Kbit	wide	prediction	output	patterns.	
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• The	codec	is	linked	with	the	ML	program	to	form	a	compound	system	that	allows	

for	words	as	input	and	words	as	output.	

• The	 encoder	part	 of	 the	 codec	 (word	 to	 pattern	 converter)	 is	 linked	 to	 the	ML	

program	 inputs	 in	 order	 to	 be	 able	 to	 feed	 in	 sequences	 of	words.	 After	 every	

word	of	a	sequence,	the	ML	program	outputs	a	binary	pattern	corresponding	to	a	

prediction	of	what	 it	 expects	next.	 The	ML	program	grounds	 its	 predictions	on	

the	(learned)	experience	of	sequences	it	had	seen	previously.	

• The	 decoder	 part	 of	 the	 codec	 (pattern	 to	 word	 converter)	 is	 linked	 to	 the	

prediction	outputs	of	the	ML	program.	In	this	way,	a	series	of	words	can	be	fed	

into	 the	 compound	 system	 that	 predicts	 the	 next	 expected	 word	 at	 its	 output	

based	on	previously	seen	sequences.	

	

	
	

Fig.		23:	Concrete	experiment	implementation	

The	ML	program	used	 in	 this	experiment	 is	 the	Hierarchical	Temporal	Memory	

(HTM)	developed	by	Numenta.	The	code	is	publicly	available	under	the	name	of	NuPIC	

and	actively	supported	by	a	growing	communityiv.	NuPIC	implements	the	cortical	theory	

developed	by	Jeff	Hawkins.	

NuPIC	 is	 a	 Pattern	 Sequence	 Learner.	 This	 means	 that	 the	 initially	 agnostic	

program6	can	 be	 trained	 on	 sequences	 of	 data	 patterns	 and	 is	 able	 to	 predict	 a	 next	

pattern	based	on	previously	exposed	sequences	of	patterns.	

	

In	 the	 following	 experiments	 the	 data	 consists	 of	 English	 natural	 language.	We	

use	the	Cortical.io	API	to	encode	words	into	binary	patterns,	which	can	be	directly	fed	

into	 the	 HTM	 Learning	 Algorithm	 (HTM	 LA).	 Being	 an	 online	 learning	 algorithm,	 the	

																																																								
6	In	its	initial	state	the	algorithm	does	not	know	of	any	SDR	or	sequence	thereof.	
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HTM	LA	learns	every	time	it	is	exposed	to	input	data.	It	is	configured	to	store	frequently	

occurring	patterns	and	the	sequences	they	appear	in.			

After	the	HTM	LA	has	read	a	certain	number	of	words,	it	should	start	to	predict	

the	next	word	depending	on	the	words	read	previously.	The	learning	algorithm	outputs	

a	binary	prediction	pattern	of	the	same	size	as	the	input	pattern,	which	is	then	decoded	

by	the	Cortical.io	API	back	into	a	word7.	

The	full	stop	at	the	end	of	a	sentence	is	interpreted	by	the	HTM	LA	as	an	end-of-

sequence	signal,	which	ensures	that	a	new	sequence	is	started	for	each	new	sentence.	

Experiment	1:	“What	does	the	fox	eat?”	

In	 this	 first	 experiment,	 the	 setup	 is	used	 in	 the	 simplest	 form.	A	dataset	of	36	

sentences,	each	consisting	of	a	simple	statement	about	animals	and	what	they	eat	or	like,	

is	 fed	 in	 sequence	 into	 the	HTM	LA.	A	new	pattern	 sequence	 is	 started	 after	 each	 full	

stop	by	signaling	it	to	the	HTM	LA.	Each	sentence	is	submitted	only	once.	The	HTM	LA	

sees	a	binary	pattern	of	16K	bits	for	each	word	and	does	not	know	anything	about	the	

input,	not	even	which	language	is	being	used.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

																																																								
7	The	Cortical.io	API	returns	the	word	for	the	closest	matching	fingerprint.	
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Dataset	

The	following	36	sentences	are	presented	to	the	system:	
 

1. frog eat flies. 

2. cow eat grain. 

3. elephant eat leaves. 

4. goat eat grass. 

5. wolf eat rabbit. 

6. cat likes ball. 

7. elephant likes water. 

8. sheep eat grass. 

9. cat eat salmon. 

10. wolf eat mice. 

11. lion eat cow. 

12. dog likes sleep. 

13. coyote eat mice. 

14. coyote eat rodent. 

15. coyote eat rabbit. 

16. wolf eat squirrel. 

17. cow eat grass. 

18. frog eat flies. 

19. cow eat grain. 

20. elephant eat leaves. 

21. goat eat grass. 

22. wolf eat rabbit. 

23. sheep eat grass. 

24. cat eat salmon. 

25. wolf eat mice. 

26. lion eat cow. 

27. coyote eat mice. 

28. elephant likes water. 

29. cat likes ball. 

30. coyote eat rodent. 

31. coyote eat rabbit. 

32. wolf eat squirrel. 

33. dog likes sleep. 

34. cat eat salmon. 

35. cat likes ball. 

36. cow eat grass. 

	

Please	note	that,	for	reasons	of	simplicity,	the	sentences	are	not	necessarily	grammatically	correct.	

Fig.		24:	The	“What	does	the	fox	eat”	experiment	

Results	

The	HTM	LA	 is	a	so-called	Online	Learning	System	that	 learns	whenever	 it	gets	

data	as	 input	and	has	no	 specific	 training	mode.	After	 each	presented	word	 (pattern),	

the	HTM	LA	outputs	its	best	guess	of	what	it	expects	the	next	word	to	be.	The	quality	of	

predictions	 rises	 while	 the	 36	 sentences	 are	 learned.	 We	 discard	 these	 preliminary	

outputs	and	only	query	the	system	by	presenting	the	beginning	of	a	37th	sentence	"fox	

eat".	The	final	word	is	left	out	and	the	prediction	after	the	word	eat	is	considered	to	be	

the	answer	to	the	implicit	question:	

"what	does	the	fox	eat?".		The	system	outputs	the	word	rodent.	

Discussion	

The	result	obtained	is	remarkable,	as	it	is	correct	in	the	sense	that	the	response	is	

actually	something	that	could	be	food	for	some	animal,	and	also	correct	in	the	sense	that	

rodents	are	actually	typical	prey	for	foxes.	

Without	knowing	more	details,	it	looks	as	if	the	HTM	was	able	to	understand	the	

meaning	 of	 the	 training	 sentences	 and	 was	 able	 to	 infer	 a	 plausible	 answer	 for	 a	

question	about	an	animal	that	was	not	part	of	its	training	set.	Furthermore,	the	HTM	did	
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not	 pick	 the	 correct	 answer	 from	a	 list	 of	 possible	 answers	 but	 actually	 synthesized	 a	

binary	pattern,	for	which	the	closest	matching	word	in	the	Cortical.io	Retina8	happens	to	

be	rodent.	

Experiment	2:	“The	Physicists”	

The	 second	 experiment	 uses	 the	 same	 setup	 as	 in	 experiment	 1.	 This	 time,	 a	

different	set	of	training	sentences	is	used.	In	the	first	case	it	was	the	goal	to	generate	a	

simple	inference	based	on	a	single	list	of	examples.	Now,	the	inference	is	structured	in	a	

slightly	 more	 complex	 fashion.	 The	 system	 is	 trained	 on	 examples	 of	 two	 different	

professions:	physicists	and	singers	and	what	they	like	(mathematics	and	fans)	and	what	

the	profession	actors	like	(fans).	

	

	

	

	

	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
																																																								
8	This	Retina	has	been	trained	on	400K	Wikipedia	pages.	This	is	also	the	reason	why	it	could	
understand	(by	analogy)	what	a	fox	is	without	ever	having	seen	it	in	the	training	material.	What	
it	has	been	seeing	are	the	words	wolf	and	coyote,	which	share	many	bits	with	the	word	fox.		
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Dataset	
Physicists: 

1. marie curie be physicist. 

2. hans bethe be physicist. 

3. peter debye be physicist. 

4. otto stern be physicist. 

5. pascual jordan be physicist. 

6. felix bloch be physicist. 

7. max planck be physicist. 

8. richard feynman be physicist. 

9. arnold sommerfeld be physicist. 

10. enrico fermi be physicist. 

11. lev landau be physicist. 

12. steven weinberg be physicist. 

13. james franck be physicist. 

14. karl weierstrass be physicist. 

15. hermann von helmholtz be physicist. 

16. paul dirac be physicist. 

 

What Physicists like: 

1. eugene wigner like mathematics. 

2. wolfgang pauli like mathematics. 

 

What Actors like: 

1. pamela anderson like fans. 

2. tom hanks like fans. 

3. charlize theron like fans. 

 

Singers: 

1. madonna be singer. 

2. rihanna be singer. 

3. cher be singer. 

4. madonna be singer. 

5. elton john be singer. 

6. kurt cobain be singer. 

7. stevie wonder be singer. 

8. rod stewart be singer. 

9. diana ross be singer. 

10. marvin gaye be singer. 

11. aretha franklin be singer. 

12. bonnie tyler be singer. 

13. elvis presley be singer. 

14. jackson browne be singer. 

15. johnny cash be singer. 

16. linda ronstadt be singer. 

17. tina turner be singer. 

18. joe cocker be singer. 

19. chaka khan be singer. 

20. eric clapton be singer. 

21. elton john be singer. 

22. willie nelson be singer. 

23. hank williams be singer. 

24. mariah carey be singer. 

25. ray charles be singer. 

26. chuck berry be singer. 

27. cher be singer. 

28. alicia keys be singer. 

29. bryan ferry be singer. 

30. dusty springfield be singer. 

31. donna summer be singer. 

32. james taylor be singer. 

33. james brown be singer. 

34. carole king be singer. 

35. buddy holly be singer. 

36. bruce springsteen be singer. 

37. dolly parton be singer. 

38. otis redding be singer. 

39. meat loaf be singer. 

40. phil collins be singer. 

41. pete townshend be singer. 

42. roy orbison be singer. 

43. jerry lee lewis be singer. 

44. celine dion be singer. 

45. alison krauss be singer. 

 

What Singers like: 

1. katy perry like fans. 

2. nancy sinatra like fans. 

Please	note	that,	for	reasons	of	simplicity,	the	sentences	are	not	necessarily	grammatically	correct.	

Fig.		25:	The	“The	Physicists”	experiment	

Results	

The	program	is	started	using	 the	datasets	above.	This	 is	 the	 terminal	 log	of	 the	

running	experiment:	
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Starting training of CLA ... 
 
. . . . . . . . . . . . . . . . 
 
. . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . .  
. . . . . 
 
. . 
 
. . 
 
. . . 
Finished training the CLA. 
Querying the CLA: 
eminem be => singer 
eminem like => fans 
niels bohr be => physicist 
niels bohr like => mathematics 
albert einstein be => physicist 
albert einstein like => mathematics 
tom cruise like => fans 
angelina jolie like => fans 
brad pitt like => fans 
physicists like => mathematics 
mathematicians like => mathematics 
actors like => fans 
physicists be => physicist 

	
Fig.		26:	Terminal	log	showing	the	results	of	“The	Physicists”	experiment	

Discussion	

After	 training	 the	 HTM	 with	 this	 small	 set	 of	 examples	 (note	 that	 the	 classes	

“What	Physicists	 like”	 and	 “What	 Singers	 like”	 are	only	 characterized	by	 two	example	

sentences),	a	set	of	queries	based	on	unseen	examples	of	singers,	actors	and	physicists	is	

submitted.	In	all	cases,	the	system	was	able	to	make	the	correct	inferences,	regardless	of	

the	verb	used	(be,	 like).	The	 last	 four	queries	suggest	that	the	system	was	also	able	to	

generalize	 from	 the	 concrete	 examples	 of	 the	 training	 sentences	 towards	 the	

corresponding	 class	 labels	 like	physicists,	actors	 and	 singers	 and	associate	 to	 them	 the	

correct	like-preferences.	

For	 these	 inferences	 to	be	possible,	 the	system	has	 to	have	access	 to	some	real	

world	 information.	As	 the	HTM	 itself	had	no	preemptive	knowledge,	 the	only	possible	
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source	for	bringing	in	this	information	would	have	been	through	the	language	elements	

used	as	training	material.	But	the	very	small	amount	of	training	material	clearly	does	not	

contain	all	that	background	in	a	descriptive	or	declarative	form.	So	the	only	point	where	

the	 relevant	 context	 could	 have	 been	 introduced	 is	 through	 the	 encoding	 step,	

converting	the	symbolic	string	into	a	binary	word	pattern.	 	
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