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Introduction	
During the last few years, the big promise of computer science, to solve any computable problem 
given enough data and a gold standard, has triggered a race for machine learning (ML) among 
tech communities. Sophisticated computational techniques have enabled the tackling of problems 
that have been considered unsolvable for decades. Face recognition, speech recognition, self-
driving cars; it seems like a computational model could be created for any human task. 
 
Anthropology has taught us that a sufficiently complex technology is indistinguishable from 
magic by the non-expert, indigenous mind. Science Fiction culture, on the other hand, has 
nurtured the vision of machines becoming able to do what so far has only been possible for 
humans. One of those abilities being to fully understand the meaning behind natural language 
artifacts. 
 
The majority of these computational ML models are statistical in the sense that they make 
strongly idealized assumptions on the data they are applied to. These a priori concepts are 
typically place holders for the missing conceptual model that would fully explain the 
phenomenon at hand. 
 
One of the most intriguing aspects of the human brain is the fact that it does not seem to make 
any assumption at all about the data it gets exposed to. The brain can hear with the visual cortex 
and see with auditory areas, indicating that it uses model free methods. 
 
As John Ball nicely pointed out in his blog post (A.I. is too hard for programmers): 

“The biggest difference between computers and brains? Computer programmers define 
the general to store specifics, but brains store the specific to identify the general. Brains 
learn this way, but computers don’t.” 

It might well turn out that universal intelligence is more a matter of architecture than of any 
applied algorithm, making it intrinsically impossible for Allan Turing’s “universal computing 
machine” to ever reach the performance levels of the “highly specialized computing machine”: 
the human brain.	
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Motivation	for	Semantic	Folding	

Solving	‘Hard’	Problems	
Natural language understanding is an AI-complete problem because it cannot be solved by an 
algorithm alone, but also needs world-knowledge to achieve human performance levels1. 
Humans, or more precisely human brains, produce language and understand language and 
therefore possess all necessary tooling to perform these tasks. 
The common natural science2 approach to investigate a non-obvious phenomenon is to collect 
data by measuring relevant variables associated with the phenomenon. By studying the sampled 
real-world data, the scientific mind can apply inductive, deductive, analogical (…) reasoning to 
create a theory that describes the systemic atoms involved and their interactions in a formal 
framework. If a specific phenomenon is not yet explainable by a complete theory, it is common 
practice to create a computational model that simulates the system under observation to the 
extent that it is able to generate data that is as similar as possible to the sampled real-world data. 
By lacking a sound theory, the nature of the system-atoms involved is often unclear and can only 
be represented using statistical descriptors, which finally results in a statistical model of the 
system. Although statistical modeling offers very convenient ways to describe complex systems 
and their behaviors, the precision margin of the statistical features used and the necessary 
conceptual simplification introduce a fundamental system-error, making extensive tuning and 
refining steps necessary before a model becomes useful in a real-world setting. The model-free 
approach of a theory is to completely avoid this model-error, at the cost of having to create a 
sound theory in the first place.  
 
Example: Early pharmaceutical research has been investigating natural molecules mostly from 
plants or other simple organisms for their clinical use as remedies against certain diseases by 
making large numbers of matching-experiments and deriving a statistical model. Since these 
early days, a large number of molecular mechanisms that constitute the pharmacological effect 
have been identified and today form a theoretical framework that can be applied to molecular 
synthesis processes. As a result, drugs are nowadays more often designed than discovered. 

The	Nature	of	Neuro-Computation	
Jeff Hawkins’ declared goal is to understand how the human neocortex works or in other 
words to uncover the theory of cortical computation. In his approach, he is taking generic 
biological data as input (neuro-scientific findings), which he consolidates into hypotheses 
from which he derives a technical system (software) that can be used to generically 
measure the correctness of the hypothesis. Every confirmed hypothesis further completes 
the Hierarchical Temporal Memory (HTM) theory. The technical system generated by 
this process is implemented as the Nupic package, open-sourced and supported by the 
company Numenta. The resulting HTM theory describes a precise set of constraints and 
mechanisms that govern every cortical process. 

The	Representational	Problem	
Since the early days of Natural Language Processing (NLP), a central problem has 
remained: How to represent symbolic natural language units, like words, sentences, 
paragraphs or books, as directly computable items in a similar way to numbers. What is 

                                                
1	Natural	Language	Understanding	–	“Encyclopedic	knowledge	is	required	to	understand	natural	language.	Therefore,	a	complete	
natural	language	system	will	also	be	a	complete	intelligent	system.”	

FROM:	"AI-Complete,	AI-Hard,	or	AI-Easy:	Classification	of	Problems	in	Artificial	Intelligence",	Roman	V.	Yampolskiy	
2	Scientific	fields	are	commonly	divided	into	two	major	groups:	Natural	sciences,	which	study	natural	phenomena	(including	biological	

life),	and	social	sciences,	which	study	human	behavior	and	societies.	(Wikipedia)	
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obviously missing is a representational theory for language3. As language is computed in 
the human neocortex, this representational theory should also comply with HTM theory 
and its constraints. 

On	Statistical	Modeling	
This fundamental lack of a representational theory has resulted in NLP relying heavily on 
statistical feature modeling.  
While statistical language models have in general achieved a high degree of sophistication, 
complexity and usecase specialization, they are still subject to the systemic restrictions of 
statistical modeling: 

• Statistical language models need large amounts of training data, orders of magnitude 
more than humans would need. 

• Statistical language models are oversimplified compared to real human language. 
• The oversimplification induces semantic noise, which leads to a high false positives rate, 

requiring humans for correction. 
• The internal data structures of statistical language models often consist of very large 

floating point matrices, requiring a large computational effort for complex semantic 
processing. 

Frequent	Criticisms	of	Semantic	Folding	

“Semantic	Folding	is	JUST	Word	Embedding”	
This argument is like dismissing ‘Tesla’ for being JUST a car company. Semantic Folding forms 
the word vectors using distributional encoding of explicit features, leading to a high dimensional 
sparse representation, while traditional word embeddings use dimensionality reduction to create 
low-dimensional, dense word representations. 
Here are the top four advantages of Semantic Folding over statistical word embeddings: 

Higher	Semantic	Payload	of	Features	
A central aspect of Semantic Folding’s first encoding step is the degree to which 
semantic information is captured during the sampling process. This corresponds to the 
achievable signal to noise ratio of a general purpose sensor intended to record a physical 
value in a natural (noisy) environment. The overall achievable resolution directly depends 
on the sensor’s dynamic range. 
Word embeddings like Word2Vec generate dense vectors of several hundred features, 
while Semantic Folding easily accommodates several tens-of-thousands of features (the 
current reference implementation uses 16384 features). 
Example:  

• Word2Vec can be used to disambiguate the word “APPLE” to a computer 
company and a fruit. 

• Semantic Folding disambiguates the word “APPLE” into the contexts: hardware, 
software, mobile device, agriculture, cooking, botany, record label 

(Both systems trained exclusively on Wikipedia data.)  
The topological distribution of the features reduces contextual cross-talk as it allows the 
simultaneous representation of all contextual meanings of a word, for the given semantic 
space. 

                                                
3 “Much	work	in	traditional	artificial	intelligence	has	ignored	the	process	of	high-level	perception	by	starting	with	hand-coded	
representations.	In	this	paper,	we	argue	that	this	dismissal	of	perceptual	processes	leads	to	distorted	models	of	human	cognition“ - 
High-Level Perception, Representation, and Analogy: A Critique of Artificial Intelligence Methodology; David J. Chalmers, Robert M. 
French, Douglas R. Hofstadter, Center for Research on Concepts and Cognition, Indiana University, CRCC Technical Report 49 — March 1991 
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Universal	Compositionality	of	the	Representation	
Because all atomic word representations use the same distributional grid of the 
underlying, clustered, semantic space, they are all directly comparable to each other by 
means of a binary overlap. By making a binary union of all word representations of a 
given sentence, a representation for a whole sentence can be built without losing any 
information content4. This compositional approach can be used for any larger text 
elements (sentences, paragraphs, documents books etc.) always leading to a single, 
unique and topologically compatible representation. 
In contrast, the statistical distribution of words does not directly correspond to the 
frequencies of larger structures like word-tuples, triplets or whole sentences, thereby 
prohibiting a direct comparison between words, groups of words, sentences, paragraphs 
etc., essential for higher order semantics. 

Transparent	and	Explicit	Features	
Due to the fact that all word vector features are explicit, it is possible to inspect their 
content and, therefore, tune the semantic space to get the best performance for a given use 
case. The tuning is done by selecting the appropriate documents to be part of the 
document collection used to generate the semantic space. The selection of appropriate 
content is obviously a skill that topic experts (most of the time the owners of the data) can 
do. In contrast, the tuning of statistical systems must be realized on the algorithmic level 
by data scientists who are knowledgeable in the mathematics of the algorithm used. 
Moreover, having the actual utterances behind every position on the semantic map makes 
it possible to align the topological structure of the features for multiple languages, 
enabling the direct comparison of a word vector representation in one language to one in 
a different language. This is not efficiently achievable with a statistical encoding 
approach, where no topology is encoded in the semantic space. 

Efficient	Binary	Computation	
The Semantic Folding word vector is constituted of binary features, which makes it much 
easier to process than the double or floating-point features resulting from a statistical 
encoding. In particular, Boolean operations on binary numbers have proven to be the 
most efficient using today’s scalar microprocessors. Furthermore, the sparse binary 
vectors generated by the Semantic Folding approach have a substantially smaller memory 
footprint and can be highly compressed without loss of information. 
In contrast with the costly multi-step floating-point calculus, necessary for performing 
complex NLP functions with statistically modeled vectors, operations on sparse binary 
vectors can be realized through simple Boolean operations, often in a single step. 

Scientific	Context	
Semantic Folding is not the only approach taking advantage of the properties of sparse 
binary representations; there has also been work published by members of the word 
embedding community in an attempt to enable these benefits for their methods. 
Faruqi et al. [21] transform pre-trained Word2Vec dense double vectors into sparse 
binary representations. Several explorations of sparsity as a useful form of inductive bias 
in NLP and machine learning more broadly, have been published by Kazama and Tsujii, 
2003 [22]; Goodman, 2004 [23]; Friedman et al., 2008 [24]; Glorot et al., 2011 [25]; 
Yogatama and Smith, 2014 [26], among others. 
Introducing sparsity in word vector dimensions has been shown to improve dimension 
interpretability (Murphy et al., 2012 [27]; Fyshe et al., 2014 [28]) and usability of word 
vectors as features in downstream tasks (Guo et al., 2014 [29]). 

                                                
4	"The	Surprising	Union	Property",	Chapter	in	"Properties	of	Sparse	Distributed	Representations	and	their	Application	to	Hierarchical	
Temporal	Memory",	by	S.	Ahmad	&	J.	Hawkins,	https://arxiv.org/pdf/1503.07469.pdf	
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“Why	not	use	the	open	sourced	Word2Vec?”	
Word2Vec was created by Tomas Mikolov and his team at Google and is freely available on 
Google code. It is part of the family of word embedding models, which all have the goal to 
generate a context relative vector representation for words using a shallow neural network that is 
trained to capture semantic features. 
Although word vectors represent the newest generation of models for analyzing (and training) 
semantic language features, the usefulness of the approach is not only determined by the format 
in which the semantic payload is formatted but also by the chosen representation. 
By using dense, algebraic models, Tomas Mikolov's Word2vec, Stanford University's GloVe, 
Deeplearning4j and similar word embeddings have fundamental limitations, making it often hard 
for them to be used for many practical business cases. Here are the top arguments why these 
models might not be the best choice: 

Dense	word	embeddings	cannot	capture	ambiguity		
The shallow semantics of dense word embeddings show only limited usability in contexts 
where ambiguity of words is an issue. The system might figure out that Italy is to Rome 
what France is to Paris, but it does not link Italy to Spaghetti and Leonardo da Vinci etc. 
Richard Socher in a 2016 Lecture5: 
You may hope that one vector captures both kinds of information (run = verb and noun) 
but then vector is pulled in different directions  

Word	embeddings	lack	semantic	grounding	
A practical problem of many machine learning approaches to NLP is the low 
predictability of the resulting quality. A specific setup and parameter set might work well 
in one case but not perform at all in another. Because the vectors are not semantically 
grounded, it is not possible to debug the model by tracing back into individual feature-
values. 
Another problem when using an algebraic model instead of explicit feature encoding is 
that word embeddings cannot efficiently scale a use case across different languages. Each 
language will need its own trained model. 

Model	based	methods	suffer	from	false	positives		
A practical NLP system is exposed to many different error sources: language ambiguity, 
irregular artifacts and biases in training data, oversimplification or statistical feature 
generation.  
Even if only a small number of features in a ML word vector are wrong or omitted, the 
semantic vector representation can turn out erroneous and lead to an incorrect similarity 
measure. In contrast, when a small number of the features of a Semantic Folding 
representation are missing or misplaced, the overall similarity of two similar words is not 
substantially influenced because the majority of the features will continue to overlap.  
Errors in the similarity computation lead, at the application level (e.g. in a classifier), to 
false positives (e.g. wrongly classified documents), requiring additional, costly, human 
intervention in the business context. 

The	word2vec	feature	vector	is	not	compositional	
Representations generated through Semantic Folding are all relative to a normative 
semantic space. Any two Semantic Folding vectors can be directly compared, 
independently of the content they represent (words, phrases, sentences, paragraphs, 
documents etc.). Dense embeddings, on the other hand, are tightly associated with the 
granularity into which the training material has been segmented and do not, for example, 

                                                
5	Richard	Socher,	CS224d	-	Deep	Learning	for	Natural	Language	Processing	Lecture	3:	More	Word	Vectors,	
(https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf"	
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allow a generic comparison of a word2vec vector with a paragraph2vec vector. Many real 
world use cases, however, need to compare words to documents (search), paragraphs to 
documents (data mining) etc. 

“Semantic	Folding	has	no	comparative	evaluation”	
Even within academic circles, the evaluation of algorithms has turned out to be a very difficult 
task (e.g. Faruqui 2016 [30] and Hill 2015 [31]). In hardly any other scientific domain do 
published experiments have such a low reproducibility as in the field of machine learning-based 
natural language processing. 
A majority of the papers describe a specific algorithmic approach that is tightly coupled to a 
specific evaluation framework. The targeted improvement needed to make the results 
publishable is often achieved by optimizing the method to the evaluation set. As a result, the 
same algorithm might be the top performer for one evaluation while having bad results in 
another. In addition, the evaluation sets are often not representative of real world data (Marelli 
2014 [32]). 
 
But in any case, Cortical.io is a business not a research organization and, as in all businesses, the 
evaluation that really counts is customer satisfaction.  
Faruqui 2016 [30] concludes: 

“Word vector models should be compared on how well they can perform on a downstream NLP 
task.”  

Cortical.io uses a collection of over 35+ evaluation sets for quality control in the software 
building process. Whenever the build-process for a new version of the Cortical.io Retina Engine 
is triggered, 35+ different evaluations are executed. This evaluation data is accessible for 
Cortical.io customers. An interesting observation is that while Cortical.io is never the highest 
scoring in any of the evaluation sets it scores highly in all cases. Most other approaches only 
perform well in a small fraction of the 35+ tests. 
While Cortical.io is not actively participating in academic competitions, academic cooperation is 
very welcome. So far, a paper by a research group from Toulouse [17] has been published and 
Cortical.io has played host to several research interns. 

“Semantic	Folding	has	ONLY	logical/philosophical	arguments”	
The use of the word only in this criticism seems inadequate. A logical proof can sometimes be 
even stronger than an experimental proof as the latter could just point to a local maximum, 
whereas the associated theory allows the prediction of an absolute, experimentally testable 
maximum. Pure experimental research without a fundamental theory can often become a 
stochastic endeavor. But the creation of a sound theory, on the other hand, calls for enough 
experimental data to allow inductive reasoning. 
Another advantage of developing a technology along a theoretical framework is that extensions 
and new functional features can very often be predicted theoretically, making it much more 
efficient than mass trial–and-error experimentation. 
The Semantic Folding theory does not solely rely on neuro-scientific findings but also has strong 
mathematical foundations in the work of researchers like Pentti Kanerva [10], Teuvo Kohonen 
[11], Hinrich Schütze [12] or Magnus Sahlgren [13]. 
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Frequent	Criticisms	of	HTM	Theory	

“Jeff	Hawkins’	work	has	been	mostly	philosophical	and	less	technical”	
This is exactly right: Jeff’s declared goal is to develop a theory about cortical processing. Similar 
arguments to the same criticisms directed at Semantic Folding also apply here. A sound theory 
might be worth a thousand experiments. In the context of Jeff Hawkin’s work it is the actual goal 
to work out the theoretical framework. The technical implementation is used for verification.  
There are not many companies in the field who have a similar degree of transparency and 
openness. Every part of the theory and its implementation are openly accessibly and every 
improvement is continuously reported. The constantly evolving Nupic [18] implementation is a 
very technical way to understand and investigate the HTM approach. 

“There	are	no	mathematically	sound	proofs	or	validations	of	the	HTM	assertions”	
Mathematical proofs for Deep Learning are founded on a very unrealistic and mathematically 
simplistic interpretation of the fundamental unit: The neuron. Real neurons are, of course, very 
complex creatures with many physiological and molecular mechanisms working together. But in 
the context of finding a theory of operation it is not necessary to simulate neurons at the 
implementation level but on the functional level. And it is this realistic functional level that turns 
out to be substantially more complex than the one in the traditional neural network model ([5] 
Ahmad & Hawkins). 
Other authors have also started to mathematically explore aspects like sparse coding (Olshausen 
& Field [7]) or spatial pooling (Mnatzaganian et al. [9]) 

“There	is	no	real-world	success”	
Hierarchical Temporal Memory theory is of course, first of all, a theory. A successful theory is 
generally able to make predictions within the area of action that are able to be confirmed by 
empirical means.  

• HTM theory has already made several prognoses that were later able to be confirmed. For 
example, one very specific prediction of the temporal memory is that overall cell activity 
becomes sparser during a continuous predictable sensory stream and was confirmed in 
[19]. Another example is the case where the HTM has generated a prediction pattern that 
proves correct learning should occur only in the specific distal dendritic segment which 
became active previously. Some initial evidence for this is in [20]. 

• In practical terms, Nupic program code has proven to be particularly well-suited for 
anomaly detection products like HTM for Stocks or GROK for IT-Analytics. This domain 
of anomaly detection in complex systems is currently underserved by machine learning 
vendors. 

• From the Cortical.io perspective, the biggest success of HTM theory has been to enable 
the development of Semantic Folding technology, which is rapidly gaining traction with 
global NLP customers. 

However, the biggest form of success for a scientific theory remains as that of coherently 
explaining a given observable phenomenon in its entirety. 

“There	is	no	comparison	with	more	popular	algorithms	of	Deep	Learning”	
Comparisons of algorithmic methods are quite problematic as described earlier. The purely 
experimental comparison is highly complex to realize when maintaining high scientific 
standards. So, in practice, a combination of theoretical arguments with adequate supporting 
experiments is a much more realistic approach for small scale research organizations. 
In the Numenta research paper, “Continuous online sequence learning with an unsupervised 
neural network model” [2], the HTM-sequence memory performance is compared with other 
sequence learning algorithms, (including statistical methods: autoregressive integrated moving 
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average (ARIMA), feed-forward neural networks: online sequential extreme learning machine 
(ELM), and recurrent neural networks: long short-term memory (LSTM) and echo-state 
networks (ESN)), on sequence prediction problems with both artificial and real-world data. The 
outcome of the comparison has two very relevant results: 

• The HTM system achieved a comparable accuracy with state of the art approaches. This 
means that even with its tight biological constraints, HTM theory seems to have reached 
the precision of the current state of the art computational models. 

• The evaluation has demonstrated that HTM networks do actually exhibit certain collateral 
advantages as predicted by HTM theory. Abilities like continuous online learning, 
multiple simultaneous predictions, noise resistance and fault tolerance, among others, 
often turn out to be key factors when it comes to implementing the algorithm in the 
context of real-world challenges. 

Considering that HTM theory is still formally incomplete, substantial improvements can be 
expected in the foreseeable future. 

“Google/Deep	Mind	present	their	performance	metrics,	why	not	Numenta”	
Google and other big players in the AI arena indeed publish example code, and performance 
metrics relative to them. As mentioned earlier, it is often very hard to reproduce these results on 
a practical level, due to resource limitations for smaller organizations. When comparing the 
amount of openly published data and tools to the number of active researchers working at these 
big players, it still seems very likely that the large majority of work in the domain remains in the 
dark. Numenta, in contrast, has, since its inception published every aspect of their work, be it 
theoretical or technical in nature. 

fMRI	support	for	Semantic	Folding	Theory	
Semantic Folding theory argues that language is internally represented by a sparse binary, 
topologically distributed pattern of explicitly observable features [14].  
As early as 2008, the pioneering work of Tom Mitchell et al. [15] has shown that there is a 
strong correlation between the sparse binary distributed patterns of cortical activity captured via 
fMRI (functional magnetic resonance imaging) and language content like words. This correlation 
is strong enough to be able to train a classifier capable of detecting a word based on the fMRI-
activation pattern. 
More recently, Huth & Gallant et al. [16] were able to create a map of the distributed word 
representations across the neocortex of actual test persons. This representational map even turned 
out to be consistent across individuals, as T. Mitchell could show in his experiment. This 
intercortex consistency of the topology of the map is one of the first biological validations for the 
concept of a single semantic map, used to semantically ground the neural word representations, a 
key element of the Semantic Folding theory. Very few language machine learning techniques 
have ever been able to get such direct support from biological findings. 

Reality	Check:	Business	Applicability	
As previously stated, Cortical.io regards customer feedback as the most important objective 
evaluation method for the usefulness of its products and the associated technological approach. 
For the last 18 months, Cortical.io has systematically exposed Semantic Folding technology to as 
many businesses in as many domains and use cases as possible. This outreach resulted in about 
two dozen large enterprise customers in Europe and the US, scaling from 4K to 600K 
employees. All of them are engaged in an exploration process with several steps: learning about 
Semantic Folding; identifying, discussing, prototyping and in several cases even implementing 
their most pressing use cases using Cortical.io’s Language Intelligence approach. 
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Global	Industry	Under	Pressure	
The dominant finding was the tremendous pressure that all of these organizations have to find a 
way to systematically integrate the multitude of and ever increasing amounts of text-based 
information into their business processes. 
Even the most conservative sectors seem to have realized that their future successes or even 
survival depends on their skill in harnessing the wealth of language data available. 

• Producers or sellers of consumer products need to better understand their customers. 
• Financial services need to monitor their business processes to comply with increasingly 

refined regulations. 
• Media services need to make their content offerings findable. 
• Technical support centers have to improve efficiency in solving customer requests. 
• Service centers need to automate their agents to improve customer experience. 
• Business and legal services need to make their contracts machine understandable. 
• Internet-based businesses need to personalize their services on a global scale. 

While this list is just one of use case patterns that are common in all sectors, the full truth is that, 
at some point, every actor in a business, be it a human or a system, will need machine-
empowered Language Intelligence to stay efficient. 

“We	have	tried	everything	…”	
Considering the amount of buzz around all forms of machine learning and the ubiquitous hope 
that intelligence will emerge by just leveraging enough data, it was a surprise to see how little 
ML code has actually been deployed in production. 
“We have tried everything but nothing worked out so far.”, became a very common refrain. The 
most common reasons for failed ML-NLP initiatives have been the large number of false 
positives when trying to apply classifiers, the lack of training data, the difficulty of sourcing 
gold standards, the impossibility of tuning language models by analyzing the trained state in the 
underlying DL network, to name just a few. 
Interestingly, it was not the promise of higher precision in benchmarks, but the systematic 
avoidance of these problems when applying Semantic Folding, that restored confidence. 
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